Advertisement

Topics in Catalysis

, Volume 54, Issue 1–4, pp 135–145 | Cite as

Influence of Drying Conditions on Amine-Functionalized SBA-15 as Adsorbent of CO2

  • G. CallejaEmail author
  • R. Sanz
  • A. Arencibia
  • E. S. Sanz-Pérez
Original Paper

Abstract

Adsorption of pure CO2 on amine-functionalized SBA-15 mesoporous silica materials has been studied. Adsorbent materials were prepared by grafting the silica surface with aminopropyl (AP), ethylene-diamine (ED) and diethylene-triamine (DT) organosilane molecules. Materials so obtained were dried under air atmosphere at 110 °C and at room temperature. CO2 adsorption isotherms were carried out at 45 °C, showing that grafted materials are very efficient for CO2 removal at atmospheric pressure when samples are dried at 20 º C. However, when the drying step is carried out at 110 °C in air, CO2 adsorption capacity is low. DRIFTS analysis has shown that amino groups can undergo oxidation to oxime or imine species during drying. Adsorption capacity of the materials was found to be unchanged after some consecutive adsorption–desorption cycles, being the regeneration step performed at 110 °C under vacuum.

Keywords

Mesoporous silica SBA-15 CO2 adsorption Amine functionalization Amine degradation Carbon capture sequestration (CCS) 

Notes

Acknowledgments

This study was carried out within the framework of the CENIT CO2 Project, supported by CDTI—Spanish Industry Department (www.cenitco2.es).

References

  1. 1.
    IPCC (1990) In: Houghton JT, Jenkins GJ, Ephraims JJ (eds) IPCC first assessment report (FAR). IPCC, New YorkGoogle Scholar
  2. 2.
    Pachauri RK, Reisinger A (eds) (2007) IPCC Fourth Assessment Report: Climate Change 2007 (AR4). IPCC, GenevaGoogle Scholar
  3. 3.
    Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) (2005) IPCC special report on carbon dioxide capture and storage. IPCC, CambridgeGoogle Scholar
  4. 4.
    Kyoto Protocol to the United Nations framework convention on Climate Change. United Nations, 1998Google Scholar
  5. 5.
    The economics of adaptation to climate change (2009) World Bank, BangkokGoogle Scholar
  6. 6.
    Astarita G (1961) Chem Eng Sci 16:202–207CrossRefGoogle Scholar
  7. 7.
    Maddox RN, Mains GJ, Rahman MA (1987) Ind Eng Chem Res 26:27–31CrossRefGoogle Scholar
  8. 8.
    Rinker EB, Ashour SS, Sandall OC (2000) Ind Eng Chem Res 39:4346–4356CrossRefGoogle Scholar
  9. 9.
    Carbon sequestration. State of Science. (1999) Office of Science and Office of Fossil Energy. US Department of Energy. DOE/OS-FE, Washington DCGoogle Scholar
  10. 10.
    Tontiwachwuthikul P, Meisen A, Lim CJJ (1991) Chem Eng Data 36:130–133CrossRefGoogle Scholar
  11. 11.
    Douglas A, Costas T (2005) Sep Sci Technol 40:321–348CrossRefGoogle Scholar
  12. 12.
    Sanz R, Calleja G, Arencibia A, Sanz-Pérez ES (2010) Appl Surf Sci 256:5323–5328CrossRefGoogle Scholar
  13. 13.
    Caplow M (1968) J Am Chem Soc 24:6795–6803CrossRefGoogle Scholar
  14. 14.
    Oye G, Sjoblom J, Stocker M (2001) Adv Colloid Interface Sci 89:439–466CrossRefGoogle Scholar
  15. 15.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  16. 16.
    Xu X, Song C, Andrésen JM, Miller BG, Scaroni AW (2002) Energy Fuel 16:1463–1469CrossRefGoogle Scholar
  17. 17.
    Xu X, Song C, Andrésen JM, Miller BG, Scaroni AW (2003) Microporous Mesoporous Mater 62:29–45CrossRefGoogle Scholar
  18. 18.
    Xu X, Song C, Miller BG, Scaroni AW (2005) Ind Eng Chem Res 44:8113–8119CrossRefGoogle Scholar
  19. 19.
    Wang X, Schwartz V, Clark JC, Ma X, Overbury SH, Xu X, Song C (2009) J Phys Chem C 113:7260–7268CrossRefGoogle Scholar
  20. 20.
    Son WJ, Choi JS, Ahn WS (2008) Microporous Mesoporous Mater 113:31–40CrossRefGoogle Scholar
  21. 21.
    Chen C, Yang ST, Ahn WS, Ryoo R Chem Commun (2009) 3627–3629Google Scholar
  22. 22.
    Fauth DJ, Filburn TP, Gray ML, Hedges SW, Hoffman JS, Pennline HW, DOE/NETL-IR-2007-156Google Scholar
  23. 23.
    Liu SH, Wu CH, Lee HK, Liu SB (2010) Top Catal 53:210–217CrossRefGoogle Scholar
  24. 24.
    Su F, Lu C, Kuo S-C, Zeng W (2010) Energy Fuel 24:1441–1448CrossRefGoogle Scholar
  25. 25.
    Bhagiyalakshmi M, Yun LJ, Anuradha R, Jang HT (2010) J Hazard Mater 175:928–938CrossRefGoogle Scholar
  26. 26.
    Fisher JC, Tanthana J, Chuang SSC (2009) Environ Prog Sustain Energy 28:589–598CrossRefGoogle Scholar
  27. 27.
    Yue MB, Sun LB, Cao Y (2008) Microporous Mesoporous Mater 114:74–81CrossRefGoogle Scholar
  28. 28.
    Yue MB, Chun Y, Cao Y (2006) Adv Funct Mater 16:1717–1722CrossRefGoogle Scholar
  29. 29.
    Chong ASM, Zhao XS (2003) J Phys Chem B 107:12650–12657CrossRefGoogle Scholar
  30. 30.
    Aguado J, Arsuaga JM, Arencibia A, Lindo M, Gascón V (2009) J Hazard Mater 163:213–221CrossRefGoogle Scholar
  31. 31.
    Leal O, Bolívar C, Ovalles C, García JJ, Espidel Y (1995) Inorg Chim Acta 240:183–189CrossRefGoogle Scholar
  32. 32.
    Huang HY, Yang RT (2003) Ind Eng Chem Res 42:2427–2433CrossRefGoogle Scholar
  33. 33.
    Knowles GP, Graham JV, Delaney SW, Chaffee AL (2005) Fuel Process Technol 86:1435–1448CrossRefGoogle Scholar
  34. 34.
    Knowles GP, Delaney SW, Chaffee AL (2005) Stud Surf Sci Catal 156:887–896CrossRefGoogle Scholar
  35. 35.
    Knowles GP, Delaney SW, Chaffee AL (2006) Ind Eng Chem Res 45:2626–2633CrossRefGoogle Scholar
  36. 36.
    Harlick PJE, Sayari A (2007) Ind Eng Chem Res 46:446–458CrossRefGoogle Scholar
  37. 37.
    Van der Voort P, Gills-D’Hamers I, Vrancken KC, Vansant EF (1991) Faraday Trans 87:3899–3905CrossRefGoogle Scholar
  38. 38.
    Drage TC, Blackman JM, Pevida C, Snape CE (2009) Energy Fuel 23:2790–2796CrossRefGoogle Scholar
  39. 39.
    Cavenati S, Grande CA, Rodrigues AE (2004) J Chem Eng Data 19:1095–1101CrossRefGoogle Scholar
  40. 40.
    Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, UKGoogle Scholar
  41. 41.
    Ishikawa N, Kitazume T (1972) Chem Lett 169–170Google Scholar
  42. 42.
    Kimura M, Kuroda Y, Yamamoto O, Kubo M (1961) Bull Chem Soc Jpn 34:1081–1086CrossRefGoogle Scholar
  43. 43.
    Lebel NA, Banucci E (1971) J Org Chem 36:2440–2448CrossRefGoogle Scholar
  44. 44.
    Armor JN (1982) U.S. Patent 4.337.358Google Scholar
  45. 45.
    Armor JN, Zambri PM (1982) J Catal 73:57–65CrossRefGoogle Scholar
  46. 46.
    Matsumura Y, Hashimoto K, Moffat JB (1992) J Phys Chem 96:10448–10449CrossRefGoogle Scholar
  47. 47.
    Trejda M, Ziolek M, Decyk P, Duczmal D (2009) Microporous Mesoporous Mater 120:214–220CrossRefGoogle Scholar
  48. 48.
    Xie Y, Sharma KK, Anan A, Wang G, Biradar AV, Asefa T (2009) J Catal 265:131–140CrossRefGoogle Scholar
  49. 49.
    Khatri RA, Chuang SSC, Soong Y, Gray M (2006) Energy Fuel 20:1514–1520CrossRefGoogle Scholar
  50. 50.
    Wei J, Shi J, Pan H, Su Q, Zhu J, Shi Y (2009) Microporous Mesoporous Mater 117:596–602CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Calleja
    • 1
    Email author
  • R. Sanz
    • 1
  • A. Arencibia
    • 1
  • E. S. Sanz-Pérez
    • 1
  1. 1.Department of Chemical and Energy Technology, ESCETUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations