Topics in Catalysis

, Volume 54, Issue 1–4, pp 20–25 | Cite as

Creation of Low-Coordination Gold Sites on Au(111) Surface by 1,4-phenylene Diisocyanide Adsorption

  • Jorge Boscoboinik
  • John Kestell
  • Michael Garvey
  • Michael Weinert
  • Wilfred T. TysoeEmail author
Original Paper


The adsorption of CO on a saturated overlayer of 1,4-phenylene diisocyanide (PDI) adsorbed on a Au(111) surface at 300 K is studied using scanning tunneling microscopy (STM), density functional theory (DFT) calculations and reflection absorption infrared spectroscopy (RAIRS). The PDI forms closed-packed rows of gold-PDI chains by extracting gold atoms from the Au(111) substrate. They are imaged by STM and the structure calculated by DFT. The adsorption of CO is studied on the low-coordination gold sites formed on the PDI-covered surface where it adsorbs exhibiting a CO stretching frequency of 2004 cm−1, consistent with adsorption on an atop site. It is found that CO is stable on heating the sample to ~150 K and is only removed from the surface by heating to ~180 K. Since low-coordination gold atoms are suggested to be the active catalytic sites on supported gold nanoclusters, “embossing” the surface to form similar low-coordination sites using PDI might offer a strategy for tailoring the catalytic activity of gold.


1, 4-phenylene diisocyanide Au(111) surface Scanning tunneling microscopy Infrared spectroscopy Density functional theory 



We gratefully acknowledge the support of this work by the National Science Foundation under grant number CHE 0521328.


  1. 1.
    Boscoboinik JA, Calaza FC, Habeeb Z, Bennett DW, Stacchiola DJ, Purino MA, Tysoe WT (2010) Phys Chem Chem Phys 12(37):11624. doi: 10.1039/c003239e CrossRefGoogle Scholar
  2. 2.
    Zhang JD, Chi QJ, Ulstrup J (2006) Langmuir 22:6203CrossRefGoogle Scholar
  3. 3.
    Maksymovych P, Sorescu D, Yates JT (2006) Phys Rev Lett 97:146103CrossRefGoogle Scholar
  4. 4.
    Klappenberger F, Weber-Bargioni A, Auwärter W, Marschall M, Schiffrin A, Barth JV (2008) J Chem Phys 129:214702CrossRefGoogle Scholar
  5. 5.
    Pawin G, Wong KL, Kim D, Sun D, Bartels L, Hong S, Raman TS, Carp R, Angew MA (2008) Chem Int Ed 47:8442CrossRefGoogle Scholar
  6. 6.
    Tait SL, Langner A, Lin N, Stepanow S, Chandrasekar R, Ruben M, Kern K (2007) J Phys Chem C 111:10982CrossRefGoogle Scholar
  7. 7.
    Bond GC, Louis C, Thompson DT (2006) Catalysis by Gold. Imperial College Press, LondonCrossRefGoogle Scholar
  8. 8.
    Hutchings GJ (2008) Chem Commun 1148Google Scholar
  9. 9.
    Haruta M (2004) Gold Bull 37:27Google Scholar
  10. 10.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405CrossRefGoogle Scholar
  11. 11.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301CrossRefGoogle Scholar
  12. 12.
    Sinha AK, Seelan S, Tsubota S, Haruta M (2004) Top Catal 29:95CrossRefGoogle Scholar
  13. 13.
    Janssens TVW, Clausen BS, Hvolbæk B, Falsig H, Christensen CH, Bligaard T, Nørskov JK (2007) Top Catal 44:15CrossRefGoogle Scholar
  14. 14.
    Piccolo L, Loffreda D, Cadete Santos Aires FJ, Deranlot C, Jugnet Y, Sautet P, Bertolini JC (2004) Surf Sci 566–568:995CrossRefGoogle Scholar
  15. 15.
    Gottfried JM, Schmidt KJ, Schroeder SLM, Christmann K (2003) Surf Sci 536:206CrossRefGoogle Scholar
  16. 16.
    Jugnet Y, Cadete Santos Aires FJ, Deranlot C, Piccolo L, Bertolini JC (2002) Surf Sci 521:L639CrossRefGoogle Scholar
  17. 17.
    McElhiney G, Pritchard J (1976) Surf Sci 60:397CrossRefGoogle Scholar
  18. 18.
    Kim J, Samano E, Koel BE (2006) J Phys Chem B 110:17512CrossRefGoogle Scholar
  19. 19.
    Ruggiero C, Hollins P (1996) J Chem Soc Faraday Trans 92:4829CrossRefGoogle Scholar
  20. 20.
    Ruggiero C, Hollins P (1997) Surf Sci 377:583CrossRefGoogle Scholar
  21. 21.
    Greenler RG (1966) J Chem Phys 44:310CrossRefGoogle Scholar
  22. 22.
    Henderson JI, Feng S, Bein T, Kubiak CP (2000) Langmuir 16:6183CrossRefGoogle Scholar
  23. 23.
    Li Y, Lu D, Swanson SA, Scott JC, Galli G (2008) J Phys Chem C 112:6413CrossRefGoogle Scholar
  24. 24.
    Kim HS, Lee JL, Kim NH, Yoon JK, Park HK, Kim K (2003) Langmuir 19:6701CrossRefGoogle Scholar
  25. 25.
    Gruenbaum SM, Henney MH, Kumar S, Zou S (2006) J Phys Chem B 110:4782CrossRefGoogle Scholar
  26. 26.
    Huc V, Bourgoin J, Bureau C, Valin F, Zalczer G, Palacin S (1999) J Phys Chem B 103:10489CrossRefGoogle Scholar
  27. 27.
    Burkholder L, Stacchiola D, Boscoboinik JA, Tysoe WT (2009) J Phys Chem C 113:13877CrossRefGoogle Scholar
  28. 28.
    Yu ZQ, Wang CM, Du Y, Thevuthasan S, Lyubinetsky I (2008) Ultramicroscopy 108:873CrossRefGoogle Scholar
  29. 29.
    Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J (2007) Rev Sci Instrum 78:013705CrossRefGoogle Scholar
  30. 30.
    Narasimhan S, Vanderbilt D (1992) Phys Rev Lett 69:1564CrossRefGoogle Scholar
  31. 31.
    Barth JV, Brune H, Ertl G, Behm RJ (1990) Phys Rev B 42:9307CrossRefGoogle Scholar
  32. 32.
    Gao F, Li Z, Wang Y, Burkholder L, Tysoe WT (2007) J Phys Chem C 111:9981CrossRefGoogle Scholar
  33. 33.
    Kresse G, Joubert J (1999) J Phys Rev B 59:1758CrossRefGoogle Scholar
  34. 34.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  35. 35.
    Kresse G, Hafner J (1993) J Phys Rev B 47:RC558CrossRefGoogle Scholar
  36. 36.
    Kresse G, Furthmüller J (1996) J Phys Rev B 54:11169CrossRefGoogle Scholar
  37. 37.
    Kresse G, Furthmüller J (1996) J Comput Mater Sci 6:15CrossRefGoogle Scholar
  38. 38.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  39. 39.
    Angelici RJ, Lazar M (2008) Inorg Chem 47:9155CrossRefGoogle Scholar
  40. 40.
    Chen J, Wang W, Klemic J, Reed MA, Axelrod BW, Kaschak DM, Rawlett AM, Price DW, Dirk SM, Tour JM, Grubisha DS, Bennett DW (2002) Ann NY Acad Sci 960:69CrossRefGoogle Scholar
  41. 41.
    Ikeda K, Fujimoto N, Uehara H, Uosaki K (2008) Chem Phys Lett 460:205CrossRefGoogle Scholar
  42. 42.
    Sohn Y, White JM (2008) J Phys Chem C 112:5006CrossRefGoogle Scholar
  43. 43.
    Kim NH, Kim N (2006) J Phys Chem B 110:1837CrossRefGoogle Scholar
  44. 44.
    Stapleton JJ, Daniel TA, Uppili S, Cabarcos OM, Naciri J, Shashidhar R, Allara DL (2005) Langmuir 21:11061CrossRefGoogle Scholar
  45. 45.
    Sohn Y, White JM (2007) J Phys Chem C 111:10003CrossRefGoogle Scholar
  46. 46.
    Zhou J, Shi L, Zhang T, Chen M (2007) Chin J Chem 25:1223CrossRefGoogle Scholar
  47. 47.
    Angelici RJ (2008) J Organomet Chem 693:847CrossRefGoogle Scholar
  48. 48.
    Lin S, McCarley RL (1999) Langmuir 15:151CrossRefGoogle Scholar
  49. 49.
    Murphy K, Azad S, Bennett DW, Tysoe WT (2000) Surf Sci 467:1CrossRefGoogle Scholar
  50. 50.
    Gao F, Wang YL, Goodman DW (2009) J Phys Chem 113:14993Google Scholar
  51. 51.
    Li Z, Gao G, Furling O, Tysoe WT (2010) Surf Sci 604:136CrossRefGoogle Scholar
  52. 52.
    Koel BE, Sellidj A, Paffett MT (1992) Phys Rev B 46:7846CrossRefGoogle Scholar
  53. 53.
    Baddeley CJ, Barnes CJ, Wander A, Ormerod RM, King DA, Lambert RM (1994) Surf Sci 314:1CrossRefGoogle Scholar
  54. 54.
    Li Z, Furlong O, Calaza F, Burkholder L, Poon HC, Saldin D, Tysoe WT (2008) Surf Sci 602:1084CrossRefGoogle Scholar
  55. 55.
    Han P, Axnanda S, Lyubinstesky I, Goodman DW (2007) J Am Chem Soc 129:14355CrossRefGoogle Scholar
  56. 56.
    Li Z, Gao F, Wang Y, Calaza F, Burkholder L, Tysoe WT (2007) Surf Sci 601:1898CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jorge Boscoboinik
    • 1
  • John Kestell
    • 1
  • Michael Garvey
    • 1
  • Michael Weinert
    • 2
  • Wilfred T. Tysoe
    • 1
    Email author
  1. 1.Department of Chemistry and Biochemistry, and Laboratory for Surface StudiesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Physics, and Laboratory for Surface StudiesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations