Advertisement

Topics in Catalysis

, Volume 54, Issue 1–4, pp 219–228 | Cite as

Gold Nanoparticles on Yttrium Modified Titania: Support Properties and Catalytic Activity

  • José J. Plata
  • Antonio M. Márquez
  • Javier Fdez. SanzEmail author
  • Rafael Sánchez Avellaneda
  • Francisca Romero-Sarria
  • María Isabel Domínguez
  • Miguel Angel Centeno
  • José Antonio Odriozola
Original Paper

Abstract

A series of titanium oxide catalysts modified with yttrium has been prepared by sol–gel method and their structural properties have been studied. The incorporation of yttrium in the titania lattice favors the formation of oxygen vacancies while at low Y loadings the anatase structure is preserved. The catalytic activity of these solids for CO oxidation is found to be significantly dependent on their physical properties. In particular the amount of dopant controls the number of surface oxygen vacancies created as well as the gold particle size, which directly affects the catalytic activity. Also, a linear relationship between the catalytic activity and the band gap values, which depend on the Y loading, is observed. Density functional theory based calculations show that Y atoms are incorporated at the TiO2 surface at substitutional positions only, while the preferred oxygen vacancies arise by removing the bridge surface oxygen atoms. These O-vacancies are the preferential adsorption sites for Au atoms and nanoparticles, acting as nucleation centers that favor the dispersion of the catalyst active phase over the support surface. In agreement with experiment, Y doping is found to decrease the band gap of the support due to a destabilization of the valence band of the oxide.

Keywords

Au/TiO2-anatase Yttrium doping CO-oxidation Oxygen-vacancies DFT 

Notes

Acknowledgements

This work was funded by the Ministerio de Ciencia e Innovación, Spain, (grants ENE2009-14522-C05-01, MAT2008-04918 and CSD-00023, co-financed by FEDER from European Union), and the Junta de Andalucía (project P08-FQM-03661). Romero-Sarria thanks the Spanish MEC for her contract (Ramón y Cajal Programme). The Red Española de Supercomputación (RES-BSC) provided part of the computer time.

Supplementary material

11244_2011_9639_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2088 kb)

References

  1. 1.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  2. 2.
    Meyer R, Lemire C, Shaikuthdinov SK, Freund HJ (2004) Gold Bull 37:72Google Scholar
  3. 3.
    Nijhuis TA, Weckhuysen BM (2006) Catal Today 117:84CrossRefGoogle Scholar
  4. 4.
    Thompson DT (2003) Appl Catal A 243:201CrossRefGoogle Scholar
  5. 5.
    Abad A, Almela C, Corma A, Garcìa H (2006) Tetrahedron 62:6666CrossRefGoogle Scholar
  6. 6.
    Jacobs G, Ricote S, Patterson PM, Graham UM, Dozier A, Khalid S, Rhodus E, Davis BH (2005) Appl Catal A 292:229CrossRefGoogle Scholar
  7. 7.
    Kim CH, Thompson LT (2005) J Catal 230:66CrossRefGoogle Scholar
  8. 8.
    Wang X, Rodrìguez JA, Hanson JC (2005) J Chem Phys 123:221101CrossRefGoogle Scholar
  9. 9.
    Silberova BAA, Mul G, Makkee M, Moulijn JA (2006) J Catal 243:171CrossRefGoogle Scholar
  10. 10.
    Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319CrossRefGoogle Scholar
  11. 11.
    Bond GC, Louis C, Thompson DT (2006) Cataysis by gold. Imperial College, LondonCrossRefGoogle Scholar
  12. 12.
    Centeno MA, Paulis M, Montes M, Odriozola JA (2002) Appl Catal A 234:65CrossRefGoogle Scholar
  13. 13.
    Centeno M, Portales C, Carrizosa I, Odriozola JA (2005) Catal Lett 102:289CrossRefGoogle Scholar
  14. 14.
    Carriazo JG, Martínez LM, Odriozola JA, Moreno S, Molina R, Centeno MA (2007) Appl Catal B 72:157CrossRefGoogle Scholar
  15. 15.
    Minicó S, Scire S, Crisafulli C, Visco AM, Galvagno S (1997) Catal Lett 47:273CrossRefGoogle Scholar
  16. 16.
    Pillai UR, Deevi S (2006) Appl Catal A 229:266Google Scholar
  17. 17.
    Arena F, Famulari P, Trunfio G, Bonura G, Frusteri F, Spadaro L (2006) Appl Catal B 66(1–2):81Google Scholar
  18. 18.
    Schubert M, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113CrossRefGoogle Scholar
  19. 19.
    Romero-Sarria F, Martínez LM, Centeno MA, Odriozola JA (2007) J Phys Chem C 111:14469CrossRefGoogle Scholar
  20. 20.
    Graciani J, Nambu A, Evans J, Rodríguez JA, Sanz JF (2008) J Am Chem Soc 130:12056CrossRefGoogle Scholar
  21. 21.
    Parker SC, Grant AW, Bondzie VA, Campbell CT (1999) Surf Sci 441:1–10CrossRefGoogle Scholar
  22. 22.
    Minato T, Susaki T, Shiraki S, Kato HS, Kawai M, Aika KI (2004) Proceedings of the 22nd European Conference on Surface Science, Prague, vol 566–568 (Part 2), p 1012Google Scholar
  23. 23.
    Cruz N, Sanz JF, Rodríguez JA (2006) J Am Chem Soc 128:15600CrossRefGoogle Scholar
  24. 24.
    Wörz AS, Heiz U, Cinquini F, Pacchioni G (2005) J Phys Chem B 109:18418CrossRefGoogle Scholar
  25. 25.
    Liu Z, Cui ZL, Zhang K (2005) Mater Charact 54:123CrossRefGoogle Scholar
  26. 26.
    Panero WR, Stixrude L, Ewing RC (2004) Phys Rev B 70(5):054110CrossRefGoogle Scholar
  27. 27.
    Avellaneda RS (2010) Estudio e influencia del Y y otros modificadores superficiales en el comportamiento de catalizadores soportados en TiO2. Ph.D. thesis, Universidad de Sevilla, Sevilla, SpainGoogle Scholar
  28. 28.
    Kresse G, Hafner J (1996) Phys Rev B 47:558CrossRefGoogle Scholar
  29. 29.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  30. 30.
    Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169CrossRefGoogle Scholar
  31. 31.
    Blöchl PE (1994) Phys Rev B 50(24):17953CrossRefGoogle Scholar
  32. 32.
    Kresse G, Joubert D (1999) Phys Rev B 59(3):1758CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46(11):6671CrossRefGoogle Scholar
  34. 34.
    Harris J (1985) Phys Rev B 31(4):1770CrossRefGoogle Scholar
  35. 35.
    Diebold U (2003) Surf Sci Rep 48(5–8):53CrossRefGoogle Scholar
  36. 36.
    Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63(15):155409CrossRefGoogle Scholar
  37. 37.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188CrossRefGoogle Scholar
  38. 38.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354CrossRefGoogle Scholar
  39. 39.
    Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899CrossRefGoogle Scholar
  40. 40.
    Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  41. 41.
    Malati MA, Wong WK (1984) Surf Technol 22:305CrossRefGoogle Scholar
  42. 42.
    Shcherbakova LG, Mamsurova LG, Sukhanova GE (1979) Russ Chem Rev 48:423CrossRefGoogle Scholar
  43. 43.
    Parks G (1965) Chem Rev 65:177CrossRefGoogle Scholar
  44. 44.
    Radecka M, Zakrzewska K, Wierzbicka M, Gorzkowska A, Komornicki S (2003) Solid State Ionics 157(1–4):379CrossRefGoogle Scholar
  45. 45.
    Serpone N (2006) J Phys Chem B 110(48):24287CrossRefGoogle Scholar
  46. 46.
    Carrettin S, Hao Y, Aguilar-Guerrero V, Gates BC, Trasobares S, Calvino JJ, Corma A (2007) Chem Eur J 13:27–7771CrossRefGoogle Scholar
  47. 47.
    Centeno MA, Hidalgo MC, Domínguez MI, Navio JA, Odriozola JA (2008) Catal Lett 123:198CrossRefGoogle Scholar
  48. 48.
    Thomas AG, Flavell WR, Kumarasinghe AR, Mallick AK, Tsoutsou D, Smith GC, Stockbauer R, Patel S, Grätzel M, Hengerer R (2003) Phys Rev B 67(3):035110CrossRefGoogle Scholar
  49. 49.
    Gole JL, Prokes SM, Gelmbocki OJ (2008) J Phys Chem C 112:1782CrossRefGoogle Scholar
  50. 50.
    Lin J, Yu JC (1998) J Photochem Photobiol 116:63 (112)Google Scholar
  51. 51.
    Fischer J, Hollomon J, Leschen J (1950) Ind Eng Chem 44:6–1324Google Scholar
  52. 52.
    Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219CrossRefGoogle Scholar
  53. 53.
    Oviedo J, San Miguel MA, Sanz JF (2004) J Chem Phys 121:7427CrossRefGoogle Scholar
  54. 54.
    Vittadini A, Selloni A (2002) J Chem Phys 117:353CrossRefGoogle Scholar
  55. 55.
    Graciani J, Álvarez LJ, Rodríguez JA, Sanz JF (2008) J Phys Chem C 112:2624CrossRefGoogle Scholar
  56. 56.
    Graciani J, Ortega Y, Sanz JF (2009) Chem Mater 21:1431CrossRefGoogle Scholar
  57. 57.
    Roldan A, Boronat M, Corma A, Illas Francesc (2010) J Phys Chem C 114:6511CrossRefGoogle Scholar
  58. 58.
    Carrettin S, Hao Y, Aguilar-Guerrero V, Gates BC, Trasobares S, Calvino JJ, Corma A (2007) Chem Eur J 13:7771CrossRefGoogle Scholar
  59. 59.
    Karvinen S (2003) Sol State Sci 5:811CrossRefGoogle Scholar
  60. 60.
    Cavalheiro AA, Bruno JC, Saeki MJ, Valente JPS, Florentino AO (2008) J Mater Sci 43:602CrossRefGoogle Scholar
  61. 61.
    Perdew JP, Levy M (1983) Phys Rev Lett 51:20–1884CrossRefGoogle Scholar
  62. 62.
    Sham LJ, Schlüter M (1983) Phys Rev Lett 51:20–1888CrossRefGoogle Scholar
  63. 63.
    Lany S, Zunger A (2008) Phys Rev B 78(23):235104CrossRefGoogle Scholar
  64. 64.
    Campbell C, Parker S, Starr D (2002) Sience 298:811Google Scholar
  65. 65.
    Molina LM, Hammer B (2003) Phys Rev Lett 90:20–206102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • José J. Plata
    • 1
  • Antonio M. Márquez
    • 1
  • Javier Fdez. Sanz
    • 1
    Email author
  • Rafael Sánchez Avellaneda
    • 2
  • Francisca Romero-Sarria
    • 2
  • María Isabel Domínguez
    • 2
  • Miguel Angel Centeno
    • 2
  • José Antonio Odriozola
    • 2
  1. 1.Departamento de Química Física, Facultad de QuímicaUniversidad de SevillaSevillaSpain
  2. 2.Departamento de Quimica Inorgánica e Instituto de Ciencia de Materiales de SevillaCentro Mixto Universidad de Sevilla-CSICSevillaSpain

Personalised recommendations