Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ni–Nb-Based Mixed Oxides Precursors for the Dry Reforming of Methane

  • 304 Accesses

  • 8 Citations


Perovskite-related mixed-oxides based on La Ni Nb and La Sr Ni Nb were synthesized by the auto combustion method to use as precursors materials for the catalytic reforming of methane at 700 ºC, atmospheric pressure, CH4:CO2 = 1:1. LaNiO3 and LaNbO4 were used as reference. XRD analysis show that the synthesis method produce a new series of precursor family formed by a mixture of oxides where Ni crystallized as part of a perovskite and Ruddlesden–Popper structure while Nb formed lanthanum orthoniobate LaNbO4, a scheelite-type structure alternating with oxide layers, with phase distribution depending on niobium content. For Nb (x ≤ 0.3) Ni crystallizes as LaNiO3 perovskite-type oxide while for Nb (x ≥ 0.7) it forms mainly the orthoniobate phase LaNbO4 a scheelite-type structure. At higher calcined temperatures (~1100 °C) La2Ni0.8Nb0.2O4 was formed with a Ruddlesden–Popper structure consisting of three perovskite type layers along the c-axis alternating with a layer of the rock salt type phase. TEM analysis showed the presence of cubic particles with sizes varying between 5 and 60 nm depending on the extent of substitution of Ni by Nb. Reduction of the perovskite-related precursor oxides produced a series of Ni0/La2O3–NbOx oxides with high metallic dispersion which favors the activity and stability of the catalysts. Introduction of doping quantities of Sr into LaNi0.8Nb0.2O3±λ structure produced a mixture of oxides with Sr dissolved in the lanthanum orthoniobate LaNbO4 scheelite-type structure due to the similarity of ionic radii of La and Sr. Under the reaction conditions conversions near the thermodynamic equilibrium were attained which remains for long periods of time assessing the stability of the synthesized catalysts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Somorjai GA, McCrea K (2001) Appl Catal A Gen 222:3–18

  2. 2.

    Lira E, Lopez CM, Oropeza F, Bartolini M, Alvarez J, Goldwasser MR, Lopez Linares F, Lamonier Jean-François, Josefina Perez Zurita M (2008) J Mol Catal A Chem 281:146–153

  3. 3.

    Nagaoka K, Jentys A, Lercher JA (2005) J Catal 229:185–196

  4. 4.

    Basini L (2005) Catal Today 106:34–40

  5. 5.

    Rivas ME, Fierro JLG, Guil-López R, Peña MA, La Parola V, Goldwasser MR (2008) Catal Today 133–135:367–373

  6. 6.

    Rivas ME, Fierro JLG, Goldwasser MR, Pietri E, Perez Zurita MJ, Griboval-Constant A, Leclercq G (2008) Appl Catal A Gen 344:10–19

  7. 7.

    Hori C, Rivas ME, Fierro JLG, Goldwasser MR, Griboval A (2008) J Power Source 184:265–275

  8. 8.

    Erdohelyi A, Fodor K, Szailer T (2004) Appl Catal B Environ 53:153–160

  9. 9.

    Goldwasser MR, Rivas ME, Pietri E, Pérez Zurita MJ, Cubeiro ML, Griboval-Constant A, Leclercq G (2005) J Mol Catal A Chem 228:325–331

  10. 10.

    Goldwasser MR, Dorantes V, Pérez-Zurita MJ, Sojo PR, Cubeiro ML, Pietri E, González-Jiménez F, Lee Ng, Moronta D (2003) J Mol Catal A Chem 193:227–236

  11. 11.

    Martinez R, Romero E, Guimon C, Bilbao R (2004) Appl Catal A Gen 274:139–149

  12. 12.

    Batiot-Dupeyrat C, Valderrama G, Meneses A, Martínez F, Barrault J, Tatibouët JM (2003) Appl Catal A Gen 248:143–151

  13. 13.

    Goldwasser MR, Rivas ME, Pietri E, Pérez Zurita MJ, Cubeiro ML, Griboval-Constant A, Leclercq L, Leclercq G (2003) Appl Catal A Gen 225:45–57

  14. 14.

    Pereira MM, Pereira EB, Lam YL, dos Santos T, Schmal M (2000) Stud Surf Sci Catal 130:2339–2344

  15. 15.

    Tanabe K (2003) Catal Today 78:65–77

  16. 16.

    Parlinski K, Hashi Y, Tsunekawa S, Kawazoe Y (1997) J Mater Res 12(9):2428–2437

  17. 17.

    Amow G, Davidson IJ, Skinner SJ (2006) Solid State Ionics 177:1205–1210

  18. 18.

    Valderrama G, Goldwasser MR, de Navarro C Urbina, Tatibouët JM, Barrault J, Batiot-Dupeyrat C, Martinez F (2005) Catal Today 107–108:785–791

  19. 19.

    Valderrama G, Kiennemann A, Goldwasser MR (2010) J Power Sources 195:1765–1771

  20. 20.

    Goldwasser MR, Rivas ME, Lugo ML, Pietri E, Pérez-Zurita J, Cubeiro ML, Griboval-Constant A, Leclercq G (2005) Catal Today 107–108:106–113

  21. 21.

    Rivas I, Álvarez J, Pietri E, Pérez Zurita MJ, Goldwasser MR (2010) Catal Today 149(3–4):388–393

  22. 22.

    Sleight AW (1977) In: Burton JJ, Garten RL (eds) Advanced materials in catalysis. Academic Press, San Diego, p 181

  23. 23.

    Maschio S, Bachiorrini A, Di Monte R, Montanaro L (1995) J Mater Sci 30:5433–5437

  24. 24.

    Weng X, Boldrin P, Abrahams I, Skinner SJ, Kellici S, Wenga Xiaole, Darr JA (2008) J Solid State Chem 181:1123–2123

  25. 25.

    Mogni L, Prado F, Ascolani H, Abbate M, Moreno M, Manthiram A, Caneiro A (2005) J Solid State Chem 178:1559–1568

  26. 26.

    Xiancai Li, Min Wu, Zhihua Lai, Fei He (2005) Appl Catal A Gen 290:81–86

Download references


The authors thank Brazilian Metallurgy and Mineral Company CBMM, Araxá, MG-Brazil, for the Niobium samples supplied and the Council of Scientific and Humanistic Development of Venezuelan Central University (UCV-CDCH) and the Draft Law on Science and Technology (LOCTI), through projects PG-03-00-6504-2006 and LOCTI-2008-2009 respectively, for financial support.

Author information

Correspondence to Mireya R. Goldwasser.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alvarez, J., Valderrama, G., Pietri, E. et al. Ni–Nb-Based Mixed Oxides Precursors for the Dry Reforming of Methane. Top Catal 54, 170–178 (2011). https://doi.org/10.1007/s11244-011-9636-7

Download citation


  • Ni–Nb-mixed oxides
  • Dry methane reforming
  • Perovskites-related structures
  • Ruddlesden–Popper structure
  • Scheelite structure