Topics in Catalysis

, Volume 54, Issue 8–9, pp 519–526 | Cite as

Effect of Gold Particle Size and Deposition Method on the Photodegradation of 4-Chlorophenol by Au/TiO2

  • S. Oros-Ruiz
  • J. A. Pedraza-Avella
  • C. Guzmán
  • M. Quintana
  • E. Moctezuma
  • G. del Angel
  • R. Gómez
  • E. Pérez
Original Paper

Abstract

The photoactivity of TiO2 P25 modified by surface-deposition of gold nanoparticles was investigated trough the photocatalytic degradation of aqueous 4-Chlorophenol (4-CP). The Au/TiO2 materials were prepared by three methods: photodeposition, deposition–precipitation (D–P) and colloidal deposition. Each preparation yields to different particle size, distribution and properties of gold nanoparticles. However, the photoactivity of these systems depends mainly on the gold particle size. All the materials fit well to a pseudo first order rate model and a relationship between the kinetic rate and the resulting particle sizes was found, which shows the importance of the nanoparticle size in the photoactivity of the TiO2 modified by gold. The optimal load was found to be 0.5 wt% Au/TiO2 for the material prepared by D–P, since this material increased the photoactivity degradation of commercial TiO2 in 80%.

Keywords

Titanium dioxide Gold nanoparticles Photocatalysis 4-chlorophenol 

References

  1. 1.
    Pileni MP (2005) Nanocrystals forming mesoscopic structures. Wiley, Weinheim, GermanyCrossRefGoogle Scholar
  2. 2.
    Haruta M (2003) The chemical record 3:75–87CrossRefGoogle Scholar
  3. 3.
    Haruta M (2004) Gold Bull 37:27–36CrossRefGoogle Scholar
  4. 4.
    Salata OV (2004) J Nanobiotech 2:1–6CrossRefGoogle Scholar
  5. 5.
    Alivisatos P (2004) Nat Biotech 22:47–52CrossRefGoogle Scholar
  6. 6.
    Jakob M, Levanon H (2003) Nano Lett 3:353–358CrossRefGoogle Scholar
  7. 7.
    Thompson D (2003) Appl Catal A: General 243:201–205CrossRefGoogle Scholar
  8. 8.
    Sobana N, Muruganadham M, Swaminathan M (2006) J Mol Catal A: Chem 258:124–132CrossRefGoogle Scholar
  9. 9.
    Li XZ, Li FB (2001) Environ Sci Technol 35:2381–2387CrossRefGoogle Scholar
  10. 10.
    Tian Y, Tatsuma T (2005) J Am Chem Soc 127:7632–7637CrossRefGoogle Scholar
  11. 11.
    Haruta M (1997) Catal Today 36:153–166CrossRefGoogle Scholar
  12. 12.
    Dawson A, Kamat PV (2001) J Phys Chem B 105:960–966CrossRefGoogle Scholar
  13. 13.
    Narayanan R, El-Sayed M (2005) J Phys Chem B 109:12663–12676CrossRefGoogle Scholar
  14. 14.
    Wood A, Giersig M, Mulvaney P (2001) J Phys Chem B 105:8810–8815CrossRefGoogle Scholar
  15. 15.
    Sivalingam G, Nagaveni K, Hedge MS, Madras G (2003) Appl Catal B: Environ 45:23–38CrossRefGoogle Scholar
  16. 16.
    Allmond CE, Oleshko VP, Howe JM, Fitz-Gerald JM (2006) Appl Phys A 82:675–678CrossRefGoogle Scholar
  17. 17.
    Tran H, Scott J, Chiang K, Amal R (2006) J Photochem Photobiol A: Chem 183:41–52CrossRefGoogle Scholar
  18. 18.
    Wang H, Wu Y, Xu BQ (2005) Appl Catal B: Environ 59:143–150CrossRefGoogle Scholar
  19. 19.
    Orlov A, Jefferson D, Macleod N, Lambert RM (2004) Catal Lett 92:41–47CrossRefGoogle Scholar
  20. 20.
    Rodríguez-González V, Zanella R, del Angel G, Gómez R (2008) J Mol Catal A: Chem 281:93–98CrossRefGoogle Scholar
  21. 21.
    Chan SC, Barteau MA (2005) Langmuir 21:5588–5595CrossRefGoogle Scholar
  22. 22.
    Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106:7634–7642CrossRefGoogle Scholar
  23. 23.
    Zheng N, Fan J, Stucky G (2006) J Am Chem Soc 128:6550–6551CrossRefGoogle Scholar
  24. 24.
    Cheng S, Tsai S, Lee Y (1995) Catal Today 26:87–96CrossRefGoogle Scholar
  25. 25.
    Mills A, Wang J (1998) J Photochem Photobiol A: Chem 118:53–63CrossRefGoogle Scholar
  26. 26.
    Li X, Cubbage JW, Tetzlaff TA, Jenks W (1999) J Org Chem 64:8509–8524CrossRefGoogle Scholar
  27. 27.
    Guillard C, Disdier J, Herrmann JM, Lehaut C, Chopin T, Malato S, Blanco J (1999) Catal Today 54:217–228CrossRefGoogle Scholar
  28. 28.
    Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1995) J Photochem Photobiol A: Chem 89:177–189CrossRefGoogle Scholar
  29. 29.
    Zanella R, Louis C (2005) Catal Today 107–108:768–777CrossRefGoogle Scholar
  30. 30.
    Braunstein P, Lehner H, Matt D (1990) Inorg Synth 27:218–221CrossRefGoogle Scholar
  31. 31.
    Zheng N, Stucky G (2006) J Am Chem Soc 128:14278–14280CrossRefGoogle Scholar
  32. 32.
    Porter J, Li Y, Chan C (1999) J Mater Sci 34:1523–1531CrossRefGoogle Scholar
  33. 33.
    Kamat PV (2007) J Phys Chem C 111:2834–2860CrossRefGoogle Scholar
  34. 34.
    Kamat P (2002) J Phys Chem B 106:7729–7744CrossRefGoogle Scholar
  35. 35.
    Guzmán C, Del Angel G, Gómez R, Galindo F, Zanella R, Torres G, Angeles-Chávez C, Fierro JLG (2009) J Nano Res 5:13–23CrossRefGoogle Scholar
  36. 36.
    Pelizzetti E, Minero C (1993) Langmuir 9:2995–3001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Oros-Ruiz
    • 1
  • J. A. Pedraza-Avella
    • 2
  • C. Guzmán
    • 3
  • M. Quintana
    • 4
  • E. Moctezuma
    • 5
  • G. del Angel
    • 3
  • R. Gómez
    • 3
  • E. Pérez
    • 4
  1. 1.Doctorado Institucional en Ingeniería y Ciencia de MaterialesUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  2. 2.Centro de Investigaciones en Catálisis (CICAT)Universidad Industrial de Santander (UIS)Piedecuesta (Santander)Colombia
  3. 3.Departamento de Química, Área de CatálisisGrupo ECOCATAL, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I)MéxicoMéxico
  4. 4.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  5. 5.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations