Topics in Catalysis

, Volume 53, Issue 5–6, pp 298–310 | Cite as

Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals

  • Lars C. Grabow
  • Britt Hvolbæk
  • Jens K. Nørskov
Original Paper

Abstract

Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced and the effect of adsorbate–adsorbate interaction on the trends is discussed. We find that adsorbate–adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small influence on the position of the top of the volcano, that is, on which metal is the best catalyst.

Keywords

Heterogeneous catalysis Coverage effects Adsorbate–adsorbate interactions CO oxidation Volcano plots 

Notes

Acknowledgments

The center for Atomic-scale Materials Design is supported by the Lundbeck Foundation. In addition we thank the Danish Research Council for the Technical Sciences and the NABIIT program for financial support, and the Danish Center for Scientific Computing for computer time.

References

  1. 1.
    Somorjai GA, Park JY (2009) Surf Sci 603:1293–1300CrossRefGoogle Scholar
  2. 2.
    Ertl G (2008) Angew Chem Int Ed 47:3524–3535CrossRefGoogle Scholar
  3. 3.
    Yates JT Jr (2009) Surf Sci 603:1605–1612CrossRefGoogle Scholar
  4. 4.
    Hammer B, Nørskov JK (2000) In: Gates BC, Knözinger H (eds) Advances in catalysis, vol. 45. Academic Press, San Diego and London, pp 71–129Google Scholar
  5. 5.
    Greeley J, Nørskov JK, Mavrikakis M (2002) Annu Rev Phys Chem 53:319–348CrossRefGoogle Scholar
  6. 6.
    Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489–493CrossRefGoogle Scholar
  7. 7.
    Wasileski S, Taylor C, Neurock M (2009) In: Device and materials modeling in PEM fuel cells, vol. 113. Springer, Berlin/Heidelberg, pp 551–574Google Scholar
  8. 8.
    Koper MTM, Santen RAV, Wasileski SA, Weaver MJ (2000) J Chem Phys 113:4392–4407CrossRefGoogle Scholar
  9. 9.
    Michaelides A, Hu P (2001) J Am Chem Soc 123:4235–4242CrossRefGoogle Scholar
  10. 10.
    Getman RB, Schneider WF, Smeltz AD, Delgass WN, Ribeiro FH (2009) Phys Rev Lett 102:4CrossRefGoogle Scholar
  11. 11.
    Huang P, Carter EA (2008) Annu Rev Phys Chem 59:261–290CrossRefGoogle Scholar
  12. 12.
    Hafner J (2008) J Comput Chem 29:2044–2078CrossRefGoogle Scholar
  13. 13.
    Chrétien S, Buratto SK, Metiu H (2007) Curr Opin Solid State Mater Sci 11:62–75CrossRefGoogle Scholar
  14. 14.
    Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Science 307:555–558CrossRefGoogle Scholar
  15. 15.
    Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278CrossRefGoogle Scholar
  16. 16.
    Michaelides A, Liu Z-P, Zhang CJ, Alavi A, King DA, Hu P (2003) J Am Chem Soc 125:3704–3705CrossRefGoogle Scholar
  17. 17.
    Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217CrossRefGoogle Scholar
  18. 18.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016104–016105CrossRefGoogle Scholar
  19. 19.
    Fernandez EM, Moses PG, Toftelund A, Hansen HA, Martinez JI, Abild-Pedersen F, Kleis J, Hinnemann B, Rossmeisl J, Bligaard T, Nørskov JK (2008) Angew Chem Int Ed 47:4683–4686CrossRefGoogle Scholar
  20. 20.
    Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Törnqvist E, Nørskov JK (1999) Phys Rev Lett 83:1814CrossRefGoogle Scholar
  21. 21.
    Kandoi S, Greeley J, Sanchez-Castillo MA, Evans ST, Gokhale AA, Dumesic JA, Mavrikakis M (2006) Top Catal 37:17–28CrossRefGoogle Scholar
  22. 22.
    Reuter K, Scheffler M (2004) Appl Phys A 78:793–798CrossRefGoogle Scholar
  23. 23.
    Getman RB, Xu Y, Schneider WF (2008) J Phys Chem C 112:9559–9572CrossRefGoogle Scholar
  24. 24.
    Shi H, Stampfl C (2007) Phys Rev B 76Google Scholar
  25. 25.
    Soon A, Todorova M, Delley B, Stampfl C (2006) Phys Rev B 73Google Scholar
  26. 26.
    Reuter K, Frenkel D, Scheffler M (2004) Phys Rev Lett 93:116105CrossRefGoogle Scholar
  27. 27.
    Miller SD, Kitchin JR (2009) Surf Sci 603:794–801CrossRefGoogle Scholar
  28. 28.
    Hammer B (2001) Phys Rev B 63:205423CrossRefGoogle Scholar
  29. 29.
    Mhadeshwar AB, Kitchin JR, Barteau MA, Vlachos DG (2004) Catal Lett 96:13–22CrossRefGoogle Scholar
  30. 30.
    Getman RB, Schneider WF, unpublished resultsGoogle Scholar
  31. 31.
    Smeltz AD, Getman RB, Schneider WF, Ribeiro FH (2008) Catal Today 136:84–92CrossRefGoogle Scholar
  32. 32.
    Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37–46CrossRefGoogle Scholar
  33. 33.
    Wintterlin J, Volkening S, Janssens TVW, Zambelli T, Ertl G (1997) Science 278:1931–1934CrossRefGoogle Scholar
  34. 34.
    Dumesic JA, Topsøe H, Boudart M (1975) J Catal 37:513–522CrossRefGoogle Scholar
  35. 35.
    Grunwaldt JD, Molenbroek AM, Topsøe NY, Topsøe H, Clausen BS (2000) J Catal 194:452–460CrossRefGoogle Scholar
  36. 36.
    Wagner JB, Hansen PL, Molenbroek AM, Topsøe H, Clausen BS, Helveg S (2003) J Phys Chem B 107:7753–7758CrossRefGoogle Scholar
  37. 37.
    Topsøe H (2003) J Catal 216:155–164CrossRefGoogle Scholar
  38. 38.
    Thomas JM, Hernandez-Garrido J-C (2009) Angew Chem Int Ed 48:3904–3907CrossRefGoogle Scholar
  39. 39.
    Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C, Cantoro M, Pisana S, Parvez A, Cervantes-Sodi F, Ferrari AC, Dunin-Borkowski R, Lizzit S, Petaccia L, Goldoni A, Robertson J (2007) Nano Lett 7:602–608CrossRefGoogle Scholar
  40. 40.
    van Bokhoven JA, Kartusch C, Satav S (2009) CHIMIA Int J Chem 63:111–114CrossRefGoogle Scholar
  41. 41.
    Rosenthal D, Girgsdies F, Timpe O, Blume R, Weinberg G, Teschner D, Schlögl R (2009) Z Phys Chem Int J Res Phys Chem Chem Phys 223:183–207Google Scholar
  42. 42.
    Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Science 295:2053–2055CrossRefGoogle Scholar
  43. 43.
    Bocquet ML, Michaelides A, Sautet P, King DA (2003) Phys Rev B 68:7CrossRefGoogle Scholar
  44. 44.
    Stampfl C, Soon A, Piccinin S, Shi HQ, Zhang H (2008) J Phys Condens Matter 20:19CrossRefGoogle Scholar
  45. 45.
    Lukaski A, Barteau M (2009) Catal Lett 128:9–17CrossRefGoogle Scholar
  46. 46.
    Michaelides A, Reuter K, Scheffler M, Vac J (2005) Sci Technol A 23:1487–1497Google Scholar
  47. 47.
    Reichelt R, Gunther S, Rossler M, Wintterlin J, Kubias B, Jakobi B, Schlogl R (2007) Phys Chem Chem Phys 9:3590–3599CrossRefGoogle Scholar
  48. 48.
    Bukhtiyarov VI, Nizovskii AI, Bluhm H, Havecker M, Kleimenov E, Knop-Gericke A, Schlogl R (2006) J Catal 238:260–269CrossRefGoogle Scholar
  49. 49.
    Grass ME, Zhang YW, Butcher DR, Park JY, Li YM, Bluhm H, Bratlie KM, Zhang TF, Somorjai GA (2008) Angew Chem Int Ed 47:8893–8896CrossRefGoogle Scholar
  50. 50.
    Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) Surf Sci 603:65–70CrossRefGoogle Scholar
  51. 51.
    Alayon EMC, Singh J, Nachtegaal M, Harfouche M, van Bokhoven JA (2009) J Catal 263:228–238CrossRefGoogle Scholar
  52. 52.
    Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Phys Rev Lett 95Google Scholar
  53. 53.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  54. 54.
    Vanderbilt D (1990) Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  55. 55.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  56. 56.
    Gillan MJ (1989) J Phys Condens Matter 1:689–711CrossRefGoogle Scholar
  57. 57.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  58. 58.
    Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Angew Chem Int Ed 47:4835–4839CrossRefGoogle Scholar
  59. 59.
    Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113:10548–10553CrossRefGoogle Scholar
  60. 60.
    Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J (2001) J Phys Chem B 105:4018–4025CrossRefGoogle Scholar
  61. 61.
    Abild-Pedersen F, Andersson MP (2007) Surf Sci 601:1747–1753CrossRefGoogle Scholar
  62. 62.
    Tang HR, Van A, der Ven Trout BL (2004) Mol Phys 102:273–279CrossRefGoogle Scholar
  63. 63.
    Nagasaka M, Kondoh H, Nakai I, Ohta T (2007) J Chem Phys 126:044704CrossRefGoogle Scholar
  64. 64.
    Gland JL, Kollin EB (1983) J Chem Phys 78:963–974CrossRefGoogle Scholar
  65. 65.
    Ertl G, Norton PR, Rüstig J (1982) Phys Rev Lett 49:177CrossRefGoogle Scholar
  66. 66.
    Ertl G (1991) Science 254:1750–1755CrossRefGoogle Scholar
  67. 67.
    Graham MD, Kevrekidis IG, Asakura K, Lauterbach J, Krischer K, Rotermund H-H, Ertl G (1994) Science 264:80–82CrossRefGoogle Scholar
  68. 68.
    Cirak F, Cisternas JE, Cuitino AM, Ertl G, Holmes P, Kevrekidis IG, Ortiz M, Rotermund HH, Schunack M, Wolff J (2003) Science 300:1932–1936CrossRefGoogle Scholar
  69. 69.
    Imbihl R (1993) Prog Surf Sci 44:185–343CrossRefGoogle Scholar
  70. 70.
    Kim M, Bertram M, Pollmann M, Oertzen AV, Mikhailov AS, Rotermund HH, Ertl G (2001) Science 292:1357–1360CrossRefGoogle Scholar
  71. 71.
    Wolff J, Papathanasiou AG, Kevrekidis IG, Rotermund HH, Ertl G (2001) Science 294:134–137CrossRefGoogle Scholar
  72. 72.
    Oertzen AV, Rotermund HH, Mikhailov AS, Ertl G (2000) J Phys Chem B 104:3155–3178CrossRefGoogle Scholar
  73. 73.
    Temel B, Meskine H, Reuter K, Scheffler M, Metiu H (2007) J Chem Phys 126:204711CrossRefGoogle Scholar
  74. 74.
    Hellman A, Honkala K (2007) J Chem Phys. 127:194704Google Scholar
  75. 75.
    Xu Y, Ruban AV, Mavrikakis M (2004) J Am Chem Soc 126:4717–4725CrossRefGoogle Scholar
  76. 76.
    Hammer B, Nørskov JK (1995) Surf Sci 343:211–220CrossRefGoogle Scholar
  77. 77.
    Lide DR (ed) (2010) CRC Handbook of Chemistry and Physics, 90th edn (Internet Version 2010). CRC Press/Taylor and Francis, Boca Raton, FLGoogle Scholar
  78. 78.
    Yeo YY, Vattuone L (1997) J Chem Phys 106:392CrossRefGoogle Scholar
  79. 79.
    Wartnaby CE, Stuck A, Yeo YY, King DA (1996) J Phys Chem 100:12483–12488CrossRefGoogle Scholar
  80. 80.
    Pfnur H, Feulner P, Menzel D (1983) J Chem Phys 79:4613–4623CrossRefGoogle Scholar
  81. 81.
    Christmann K, Schober O, Ertl G (1974) J Chem Phys 60:4719–4724CrossRefGoogle Scholar
  82. 82.
    Castner DG, Sexton BA, Somorjai GA (1978) Surf Sci 71:519–540CrossRefGoogle Scholar
  83. 83.
    Lee H-I, White JM (1980) J Catal 63:261–264CrossRefGoogle Scholar
  84. 84.
    Peden CHF, Goodman DW (1986) J Phys Chem 90:1360–1365CrossRefGoogle Scholar
  85. 85.
    Goodman DW, Peden CHF, Chen MS (2007) Surf Sci 601:L124–L126CrossRefGoogle Scholar
  86. 86.
    Over H, Muhler M, Seitsonen AP (2007) Surf Sci 601:5659–5662CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lars C. Grabow
    • 1
  • Britt Hvolbæk
    • 1
  • Jens K. Nørskov
    • 1
  1. 1.Center for Atomic-scale Materials Design, Department of PhysicsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations