Advertisement

Topics in Catalysis

, Volume 53, Issue 5–6, pp 348–356 | Cite as

Establishing Relationships Between the Geometric Structure and Chemical Reactivity of Alloy Catalysts Based on Their Measured Electronic Structure

  • Neil Schweitzer
  • Hongliang Xin
  • Eranda Nikolla
  • Jeffrey T. Miller
  • Suljo Linic
Original Paper

Abstract

While it is fairly straightforward to predict the relative chemical reactivity of pure metals, obtaining similar structure-performance relationships for alloys is more challenging. In this contribution we present experimental analysis supported with quantum chemical DFT calculations which allowed us to propose a simple, physically transparent model to predict the impact of alloying on the local electronic structure of different sites in alloys and on the local chemical reactivity. The model was developed through studies of a number of Pt alloys. The central feature of the model is that hybridization of d-orbitals in alloys does not lead to significant charge transfer between the constituent elements in the alloy, and therefore the width of the local density of d-states projected on a site, which is easily calculated from tabulated parameters, is an excellent descriptor of the chemical reactivity of the site.

Keywords

Metal alloys Predictive model Relating geometric structures to reactivity Pt alloys XANES DFT d-band model Structure–property relationships 

Notes

Acknowledgements

We gratefully acknowledge the support of the US Department of Energy DOE-BES, Division of Chemical Sciences (FG-02-05ER15686), NSF (CTS-CAREER 0543067 and NSF CBET 0756255), and ONR (N000140810122) S. Linic also acknowledges the DuPont Young Professor grant by DuPont corporation and the Camille Dreyfus Teacher-Scholar Award for the Camille & Henry Dreyfus Foundation.

References

  1. 1.
    Kaufman JG, Rooy EL (2004) Aluminum alloy castings: properties, processes and applications. Illustrated edition. ASM International. Materials Park, OH, USAGoogle Scholar
  2. 2.
    Ponec V (2001) Appl Catal A Gen 222:31–45CrossRefGoogle Scholar
  3. 3.
    Gladys MJ, Inderwildi OR, Karakatsani S, Fiorin V, Held G (2008) J Phys Chem. C 112:6422–6429CrossRefGoogle Scholar
  4. 4.
    Nikolla E, Holewinski A, Schwank J, Linic S (2006) J Am Chem Soc 128:11354–11355CrossRefGoogle Scholar
  5. 5.
    Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489–493CrossRefGoogle Scholar
  6. 6.
    Yano H, Kataoka M, Yamashita H, Uchida H, Watanabe M (2007) Langmuir 23:6438–6445CrossRefGoogle Scholar
  7. 7.
    Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Science 279:1913–1915CrossRefGoogle Scholar
  8. 8.
    Stamenkovic VR, Fowler B, Mun B, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493–497CrossRefGoogle Scholar
  9. 9.
    Hammer B (2006) Top Catal 37:3–16CrossRefGoogle Scholar
  10. 10.
    Hammer B, Nørskov JK (1995) Surf Sci 343:211–220CrossRefGoogle Scholar
  11. 11.
    Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141CrossRefGoogle Scholar
  12. 12.
    Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278CrossRefGoogle Scholar
  13. 13.
    Hammer B, Nørskov JK (1995) Nature 376:238–240CrossRefGoogle Scholar
  14. 14.
    Harrison WA (1980) Solid state theory. Dover Publications, New YorkGoogle Scholar
  15. 15.
    Nikolla E, Schwank J, Linic S (2009) J Am Chem Soc 131:2747–2754CrossRefGoogle Scholar
  16. 16.
    Stern EA (1967) Phys Rev 157:544CrossRefGoogle Scholar
  17. 17.
    Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK (1997) J Mol Catal A Chem 115:421–429CrossRefGoogle Scholar
  18. 18.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) J Chem Phys 120:10240–10246CrossRefGoogle Scholar
  19. 19.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801CrossRefGoogle Scholar
  20. 20.
    Gracia FJ, Guerrero S, Wolf EE, Miller JT, Kroph AJ (2005) J Cata 233:372–387Google Scholar
  21. 21.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  22. 22.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  24. 24.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  25. 25.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  26. 26.
    Segall MD (2002) J Phys Condens Matter 14:2957–2973CrossRefGoogle Scholar
  27. 27.
    Gao S, Pickard CJ, Perlov A, Milman V (2009) J Phys Condens Matter 21:104203CrossRefGoogle Scholar
  28. 28.
    Gao Shang-Peng, Pickard CJ, Payne MC, Zhu J, Yuan J (2008) Phys Rev B 77:115122–115127CrossRefGoogle Scholar
  29. 29.
    Hwu HH, Eng J, Chen JG (2002) J Am Chem Soc 124:702–709CrossRefGoogle Scholar
  30. 30.
    Pettifor DG (1995) Bonding and structure of molecules and solids. Oxford University Press, USAGoogle Scholar
  31. 31.
    Mansour AN, Cook JW, Sayers DE (1984) J Phys Chem 88:2330–2334CrossRefGoogle Scholar
  32. 32.
    Durussel Ph, Massara R, Feschotte P (1994) J Alloys Compd 215:175–179CrossRefGoogle Scholar
  33. 33.
    Linde JO (1937) Annalen Der Physik 422:151–164CrossRefGoogle Scholar
  34. 34.
    Ankudinov AL, Nesvizhskii AI, Rehr JJ (2001) J Synchrotron Radiat 8:92–95CrossRefGoogle Scholar
  35. 35.
    Hammer B, Nørskov JK (1997) In: Lambert RM, Pacchioni G (eds) Chemisorption and reactivity on supported clusters and thin films. Kluwer, Dordrecht, pp 331–351Google Scholar
  36. 36.
    Newns DM (1969) Phys Rev 178:1123CrossRefGoogle Scholar
  37. 37.
    Anderson PW (1961) Phys Rev 124:41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Neil Schweitzer
    • 1
  • Hongliang Xin
    • 1
  • Eranda Nikolla
    • 1
  • Jeffrey T. Miller
    • 2
  • Suljo Linic
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations