Topics in Catalysis

, Volume 53, Issue 5–6, pp 384–392 | Cite as

Hydrogen on and in Selected Overlayer Near-Surface Alloys and the Effect of Subsurface Hydrogen on the Reactivity of Alloy Surfaces

  • Shampa Kandoi
  • Peter A. Ferrin
  • Manos Mavrikakis
Original Paper


The interaction of hydrogen with the close-packed facets of seventeen transition metals overlaid with 1 ML of five transition metals (Au, Ag, Cu, Pt, and Pd) has been studied using periodic self-consistent (GGA-PW91) density functional theory (DFT) calculations. For noble metal overlayers (Au, Ag, and Cu), hydrogen at the host-metal/overlayer interface (subsurface hydrogen) is more stable than subsurface hydrogen in the pure host. For certain Au and Ag overlayers, subsurface hydrogen is more stable than surface hydrogen in the same system. The presence of subsurface hydrogen was found to have a significant effect on the electronic structure of the overlayer, resulting in its modified surface reactivity.


DFT Hydrogen Alloys 



All three authors have greatly benefited from interactions with Prof. Jens K. Nørskov over the past several years and wish to congratulate him on his 2009 ACS Gabor A. Somorjai award for Creative Research in Catalysis. Financial support by the DOE-BES, Chemical Sciences Division, is greatly appreciated. Research was performed in part using supercomputing resources at the following institutions: (1) EMSL, a national scientific user facility located at Pacific Northwest National Laboratory; (2) the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory; (3) the Center for Nanoscale Materials (CNM) at Argonne National Laboratory; and (4) the National Energy Research Scientific Computing Center (NERSC). EMSL is sponsored by the US Department of Energy’s Office of Biological and Environmental Research. NCCS, CNM, and NERSC are supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725, DE-AC02-06CH11357, and DE-AC02-05CH11231, respectively.


  1. 1.
    Satterfield CN (1996) Heterogeneous catalysis in industrial practice, 2nd edn. Krieger Publishing Company, Malabar, FLGoogle Scholar
  2. 2.
    Chorkendorff I, Niemantsverdriet H (2003) Concepts of modern catalysis and kinetics. Wiley-VCH, Weinheim, GermanyCrossRefGoogle Scholar
  3. 3.
    Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New YorkGoogle Scholar
  4. 4.
    Christmann K (1988) Sur Sci Rep 9:1CrossRefGoogle Scholar
  5. 5.
    Nørskov JK, Christensen CH (2006) Science 312:1322CrossRefGoogle Scholar
  6. 6.
    Forsberg CW (2005) Chem Eng Prog 101:20Google Scholar
  7. 7.
    Greeley J, Mavrikakis M (2004) Nat Mater 3:810CrossRefGoogle Scholar
  8. 8.
    Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK (1997) J Mol Catal A 115:421CrossRefGoogle Scholar
  9. 9.
    Pedersen MO, Helveg S, Ruban A, Stensgaard I, Laegsgaard E, Nørskov JK, Besenbacher F (1999) Surf Sci 426:395CrossRefGoogle Scholar
  10. 10.
    Chen JG, Menning CA, Zellner MB (2008) Surf Sci Rep 63:201CrossRefGoogle Scholar
  11. 11.
    Ogura S, Fukutani K, Wilde M, Matsumoto M, Okano T, Okada M, Kasai T, Dino WA (2004) Surf Sci 566:755CrossRefGoogle Scholar
  12. 12.
    Okada M, Nakamura M, Moritani K, Kasai T (2003) Surf Sci 523:218CrossRefGoogle Scholar
  13. 13.
    Ferrin PA, Kandoi S, Zhang JL, Adzic R, Mavrikakis M (2009) J Phys Chem C 113:1411CrossRefGoogle Scholar
  14. 14.
    Greeley J, Mavrikakis M (2005) J Phys Chem B 109:3460CrossRefGoogle Scholar
  15. 15.
    Greeley J, Mavrikakis M (2006) Catal Today 111:52CrossRefGoogle Scholar
  16. 16.
    Bertolini JC (2000) Appl Catal A 191:15CrossRefGoogle Scholar
  17. 17.
    Kratzer P, Hammer B, Nørskov JK (1996) J Chem Phys 105:5595CrossRefGoogle Scholar
  18. 18.
    Knudsen J, Nilekar AU, Vang RT, Schnadt J, Kunkes EL, Dumesic JA, Mavrikakis M, Besenbacher F (2007) J Am Chem Soc 129:6485CrossRefGoogle Scholar
  19. 19.
    Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Nat Mater 7:333CrossRefGoogle Scholar
  20. 20.
    Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2005) J Catal 236:69CrossRefGoogle Scholar
  21. 21.
    Pallassana V, Neurock M, Hansen LB, Hammer B, Nørskov JK (1999) Phys Rev B 60:6146CrossRefGoogle Scholar
  22. 22.
    Calvo SR, Balbuena PB (2007) Surf Sci 601:4786CrossRefGoogle Scholar
  23. 23.
    Vukmirovic MB, Zhang J, Sasaki K, Nilekar AU, Uribe F, Mavrikakis M, Adzic RR (2007) Electrochim Acta 52:2257CrossRefGoogle Scholar
  24. 24.
    Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Top Catal 46:249CrossRefGoogle Scholar
  25. 25.
    Zhou WJ, Lee JY (2007) Electrochem Commun 9:1725CrossRefGoogle Scholar
  26. 26.
    Yang JH, Lee JY, Zhang QB, Zhou WJ, Liu ZL (2008) J Electrochem Soc 155:B776CrossRefGoogle Scholar
  27. 27.
    Nilekar AU, Xu Y, Zhang JL, Vukmirovic MB, Sasaki K, Adzic RR, Mavrikakis M (2007) Top Catal 46:276CrossRefGoogle Scholar
  28. 28.
    Okada M, Moritani K, Kasai T, Dino WA, Kasai H, Ogura S, Wilde M, Fukutani K (2005) Phys Rev B 71Google Scholar
  29. 29.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) J Am Chem Soc 130:1818CrossRefGoogle Scholar
  30. 30.
    Doyle AM, Shaikhutdinov SK, Jackson SD, Freund H-J (2003) Angew Chem Int Ed 42:5240CrossRefGoogle Scholar
  31. 31.
    Doyle AM, Shaikhutdinov SK, Freund H-J (2004) J Catal 223:444CrossRefGoogle Scholar
  32. 32.
    Johnson AD, Daley SP, Utz AL, Ceyer ST (1992) Science 257:223CrossRefGoogle Scholar
  33. 33.
    Daley SP, Utz AL, Trautman TR, Ceyer ST (1994) J Am Chem Soc 116:6001CrossRefGoogle Scholar
  34. 34.
    Ledentu V, Dong W, Sautet P (2000) J Am Chem Soc 122:1796CrossRefGoogle Scholar
  35. 35.
    Bhatia B, Sholl DS (2005) J Chem Phys 122Google Scholar
  36. 36.
    Sykes ECH, Fernandez-Torres LC, Nanayakkara SU, Mantooth BA, Nevin RM, Weiss PS (2005) Proc Natl Acad Sci USA 102:17907CrossRefGoogle Scholar
  37. 37.
    Greeley J, Nørskov JK, Mavrikakis M (2002) Annu Rev Phys Chem 53:319CrossRefGoogle Scholar
  38. 38.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  39. 39.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  40. 40.
    Chadi DJ, Cohen ML (1973) Phys Rev B 8:5747CrossRefGoogle Scholar
  41. 41.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  42. 42.
    Bengtsson L (1999) Phys Rev B 59:12301CrossRefGoogle Scholar
  43. 43.
    Neugebauer J, Scheffler M (1992) Phys Rev B 46:16067CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  45. 45.
    Jonsson H, Mills G, Jacobsen KW (1998) In: Beme BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, SingaporeGoogle Scholar
  46. 46.
    Greeley J, Mavrikakis M (2003) Surf Sci 540:215CrossRefGoogle Scholar
  47. 47.
    Hammer B, Nørskov JK (1997) NATO ASI Series, Series E: Applied Sciences: 331 (Chemisorption and Reactivity on Supported Clusters and Thin Films) 285Google Scholar
  48. 48.
    Bligaard T, Nørskov JK (2007) Electrochim Acta 52:5512CrossRefGoogle Scholar
  49. 49.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93Google Scholar
  50. 50.
    Abild-Pedersen F, Greeley J, Nørskov JK (2005) Catal Lett 105:9CrossRefGoogle Scholar
  51. 51.
    Mavrikakis M, Hammer B, Nørskov JK (1998) Phys Rev Lett 81:2819CrossRefGoogle Scholar
  52. 52.
    Grabow L, Xu Y, Mavrikakis M (2006) Phys Chem Chem Phys 8:3369CrossRefGoogle Scholar
  53. 53.
    Greeley J, Krekelberg WR, Mavrikakis M (2004) Angewandte Chemie Int Ed 43:4296CrossRefGoogle Scholar
  54. 54.
    Ferrin P, Kandoi S, Nilekar A, Mavrikakis M (in preparation)Google Scholar
  55. 55.
    Ceyer ST (2001) Acc Chem Res 34:737CrossRefGoogle Scholar
  56. 56.
    Johnson AD, Maynard KJ, Daley SP, Yang QY, Ceyer ST (1991) Phys Rev Lett 67:927CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shampa Kandoi
    • 1
    • 2
  • Peter A. Ferrin
    • 1
  • Manos Mavrikakis
    • 1
  1. 1.Department of Chemical & Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.UTC Power CorporationSouth WindsorUSA

Personalised recommendations