Topics in Catalysis

, Volume 53, Issue 5–6, pp 378–383 | Cite as

RPBE-vdW Description of Benzene Adsorption on Au(111)

  • Jess Wellendorff
  • André Kelkkanen
  • Jens Jørgen Mortensen
  • Bengt I. Lundqvist
  • Thomas Bligaard
Original Paper


Density functional theory has become a popular methodology for the analysis of molecular adsorption on surfaces. Despite this popularity, there exist adsorption systems for which commonly used exchange–correlation functionals fail miserably. Particularly those systems where binding is due to van der Waals interactions. The adsorption of benzene on Au(111) is an often mentioned such system where standard density functionals predict a very weak adsorption or even a repulsion, whereas a significant adsorption is observed experimentally. We show that a considerable improvement in the description of the adsorption of benzene on Au(111) is obtained when using the so-called RPBE-vdW functional.


Benzene Au(111) Van der Waals RPBE-vdW Density functional theory 



We gratefully thank Professor J.K. Nørskov for his inspiring enthusiasm and support over the years, and congratulate him with the Gabor A. Somorjai Award for Creative Research in Catalysis. We thank Professors G.A. Somorjai and C.T. Campbell for enlightening discussions. J.W. and T.B. thank the Somorjai group for kind hospitality during parts of this work. The Center for Atomic-scale Materials Design is funded by the Lundbeck Foundation, and this work was supported by the Danish Center for Scientific Computing.


  1. 1.
    Somorjai GA (1981) Chemistry in two dimensions: surfaces. Cornell University Press, Ithaca, NYGoogle Scholar
  2. 2.
    Stanislaus A, Cooper BH (1994) Catal Rev Sci Eng 36:75CrossRefGoogle Scholar
  3. 3.
    Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley–Interscience, New YorkGoogle Scholar
  4. 4.
    Wöll C (2001) J Synchrotron Radiat 8:129CrossRefGoogle Scholar
  5. 5.
    Syomin D, Kim J, Ellison G, Koel E (2001) J Phys Chem B 105:8387CrossRefGoogle Scholar
  6. 6.
    Weiss K, Gebert S, Wün M, Wadepohl H, Wöll C (1998) J Vac Sci Technol A 16:1017CrossRefGoogle Scholar
  7. 7.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974CrossRefGoogle Scholar
  8. 8.
    Neurock M (2003) J Catal 216:73CrossRefGoogle Scholar
  9. 9.
    Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nature Chem 1:37CrossRefGoogle Scholar
  10. 10.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  11. 11.
    Kristyán S, Pulay P (1994) Chem Phys Lett 229:175CrossRefGoogle Scholar
  12. 12.
    Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) J Chem Phys 115:8748CrossRefGoogle Scholar
  13. 13.
    Bilić A, Reimers JR, Hush NS, Hoft RC, Ford MJ (2006) J Chem Theory Comput 2:1093CrossRefGoogle Scholar
  14. 14.
    Schuster C, Schwingenschlögl U (2009) Chem Phys Lett 468:75CrossRefGoogle Scholar
  15. 15.
    Caputo R, Prascher BP, Staemmler V, Bagus PS, Wöll C (2007) J Phys Chem A 111:12778CrossRefGoogle Scholar
  16. 16.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401CrossRefGoogle Scholar
  17. 17.
    Langreth DC, Lundqvist BI, Chakarova-Käck SD, Cooper VR, Dion M, Hyldegaard P, Kelkkanen A, Kleis J, Kong L, Li S, Moses PG, Murray E, Puzder A, Rydberg H, Schröder E, Thonhauser T (2009) J Phys: Condens Matter 21:084203CrossRefGoogle Scholar
  18. 18.
    Moses PG, Mortensen JJ, Lundqvist BI, Nørskov JK (2009) J Chem Phys 130:104709CrossRefGoogle Scholar
  19. 19.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109CrossRefGoogle Scholar
  20. 20.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  21. 21.
    Bahn S, Jacobsen KW (2002) Comput Sci Eng 4:56CrossRefGoogle Scholar
  22. 22.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  23. 23.
    Pulay P (1980) Chem Phys Lett 73:393CrossRefGoogle Scholar
  24. 24.
    Chakarova-Käck SD, Schröder E, Lundqvist BI, Langreth DC (2006) Phys Rev Lett 96:146107CrossRefGoogle Scholar
  25. 25.
    Johnston K, Kleis J, Lundqvist BI, Nieminen RM (2008) Phys. Rev B 77:121404(R)Google Scholar
  26. 26.
    Román-Pérez G, Soler JM (2009) Phys Rev Lett 103:096102CrossRefGoogle Scholar
  27. 27.
    Witte G, Lukas S, Bagus PS, Wöll C (2005) Appl Phys Lett 87:263502CrossRefGoogle Scholar
  28. 28.
    Bagus PS, Hermann L, Wöll C (2005) J Chem Phys 123:184109CrossRefGoogle Scholar
  29. 29.
    Nogueira F, Castro A, Marques MAL (2003) In: Fiolhais C, Nogueira F, Marques MAL (eds) A primer in density functional theory. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jess Wellendorff
    • 1
    • 2
  • André Kelkkanen
    • 1
  • Jens Jørgen Mortensen
    • 1
  • Bengt I. Lundqvist
    • 1
  • Thomas Bligaard
    • 1
    • 2
  1. 1.Department of Physics, Center for Atomic-Scale Materials Design (CAMD)Technical University of DenmarkKgs. LyngbyDenmark
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations