Topics in Catalysis

, Volume 53, Issue 1–2, pp 13–18 | Cite as

Effect of Preparation Conditions on Ag Catalysts for Ethylene Epoxidation

  • Joseph C. Dellamorte
  • Jochen Lauterbach
  • Mark A. Barteau
Original Paper


The effect of calcination of silver catalysts supported on foamed monoliths was examined for the epoxidation of ethylene. Previous results suggested that calcination at 673 K for 3 h would give a maximum conversion. Further study revealed that calcination for >3 h reduced the catalyst surface area and therefore the conversion seen in reactor studies. This phenomenon has been attributed to sintering, with the migration of Ag from mesopores of the catalysts to macropore regions and the eventual formation of a Ag film covering the walls of the macropores. Studies of the metal loading showed that a tradeoff exists between metal loading and calcination time. Increasing the amount of silver can have a detrimental effect on catalysts calcined for 12 h, however the opposite trend, an increased conversion with higher loadings, was observed for catalysts calcined for 2 h. These results imply that the sintering of Ag can play a dramatic effect on catalyst design for optimum performance.


Ethylene epoxidation Ag catalysts Calcination Sintering Ag migration 


  1. 1.
    Lefort TE (1931) French Patent 729952, assigned to Société Française de Catalyse GénéraleGoogle Scholar
  2. 2.
    Jankowiak J, Barteau MA (2005) J Catal 236:366CrossRefGoogle Scholar
  3. 3.
    Martens A (1967) French Patent 1499285, assigned to NaphtachimieGoogle Scholar
  4. 4.
    Bhasin MM, Warner GH (1983) US Patent 4419276, assigned to Union Carbide CorporationGoogle Scholar
  5. 5.
    Sajkowski DJ, Boudart M (1987) Catal Rev Sci Eng 29:325CrossRefGoogle Scholar
  6. 6.
    Wu JC, Harriott P (1975) J Catal 39:395CrossRefGoogle Scholar
  7. 7.
    Bukhtiyarov VI, Prosvirin IP, Kvon RI, Goncharova SN, Bal’zhinimaev BS (1997) J Chem Soc Faraday Trans 93:2323CrossRefGoogle Scholar
  8. 8.
    Tsybulya SV, Kryukova GN, Goncharova SN, Shmakov AN, Bal’zhinimaev BS (1995) J Catal 154:194CrossRefGoogle Scholar
  9. 9.
    Verykios XE, Stein FP, Coughlin RW (1980) J Catal 66:368CrossRefGoogle Scholar
  10. 10.
    Goncharova SN, Paukshtis EA, Bal’zhinimaev BS (1995) Appl Catal A 126:67CrossRefGoogle Scholar
  11. 11.
    Ruckenstein E, Lee SH (1988) J Catal 109:100CrossRefGoogle Scholar
  12. 12.
    Chimentao RJ, Kirm I, Medina F, Rodriguez X, Cesteros Y, Salagre P, Sueiras JE, Fierro JLG (2005) Appl Surf Sci 252:793CrossRefGoogle Scholar
  13. 13.
    Dellamorte JC, Vijay R, Snively CM, Barteau MA, Lauterbach J (2007) Rev Sci Instrum 78:072211CrossRefGoogle Scholar
  14. 14.
    Snively CM, Katzenberger S, Oskarsdottir G, Lauterbach J (1999) Optics Lett 24:1841CrossRefGoogle Scholar
  15. 15.
    Snively CM, Lauterbach J (2005) Appl Spec 59:1075CrossRefGoogle Scholar
  16. 16.
    Linic S (2003) PhD Dissertation, University of DelawareGoogle Scholar
  17. 17.
    Campbell CT (1985) Surf Sci 157:43CrossRefGoogle Scholar
  18. 18.
    Barteau MA, Madix RJ (1980) Surf Sci 97:101CrossRefGoogle Scholar
  19. 19.
    Busser GW, Hinrichsen O, Muhler M (2002) Catal Lett 79:49CrossRefGoogle Scholar
  20. 20.
    Atkins M, Couves J, Hague M, Sakakini BH, Waugh KC (2005) J Catal 235:103CrossRefGoogle Scholar
  21. 21.
    Bal’zhinimaev BS (1999) Kinet Catal 40:795Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joseph C. Dellamorte
    • 1
  • Jochen Lauterbach
    • 1
  • Mark A. Barteau
    • 1
  1. 1.Center for Catalytic Science and Technology, Department of Chemical EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations