Advertisement

Topics in Catalysis

, Volume 53, Issue 1–2, pp 35–39 | Cite as

Vacuum and Pressured Combinatorial Processings for Exploration of Environmental Catalysts

  • Hideomi KoinumaEmail author
  • Kenji Itaka
  • Yuji Matsumoto
  • Yasuhiko Yoshida
  • Shunichi Aikawa
  • Kazuhiko Takeuchi
Original Paper

Abstract

Two types of combinatorial chemical reactors have been developed for high-throughput experimentation of catalysts that attract much interest from global environmental viewpoints. The high vacuum combinatorial laser MBE system was applied to the preparation of thin film library of TiO2 with its film thickness gradually increased, which resulted in the discovery of new phenomenon indicating a quantum size effect in TiO2 photo-catalysis. The combinatorial autoclave reactor was made to explore new catalysts and optimum reaction conditions efficiently for alternating CO2 copolymerization with epoxide (oxirane) to form bio-degradable polycarbonates. Some preliminary results are reported on the CO2 copolymerization with propylene oxide, as a means of CO2 fixation into chemically useful material.

Keywords

Combinatorial nano technology Laser MBE TiO2 photo catalyst CO2 copolymerization Combinatorial autoclave processing 

References

  1. 1.
    Koinuma H, Aiyer HN, Matsumoto Y (2000) Sci Technol Adv Mater 1:1CrossRefGoogle Scholar
  2. 2.
    Koinuma H, Takeuchi I (2004) Nat Mater 3:429CrossRefGoogle Scholar
  3. 3.
    Koinuma H, Xiang X-D, Kawasaki M, Chikyow T (eds) (2002) Combinatorial materials science and technology. Elsevier Science, North-HollandGoogle Scholar
  4. 4.
    Ohnishi T, Komiyama D, Koida T, Ohashi S, Stauter C, Koinuma H, Ohtomo A, Lippmaa M, Nakagawa N, Kawasaki M, Kikuchi T, Omote K (2001) Appl Phys Lett 79:536CrossRefGoogle Scholar
  5. 5.
    Lippmaa M, Kawasaki M, Koinuma H (2003) In: Xiang XD, Takeuchi I (eds) Combinatorial material synthesis, Ch 5. Marcel Dekker Inc., New YorkGoogle Scholar
  6. 6.
    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Science 291:854CrossRefGoogle Scholar
  7. 7.
    Nishii J, Hossain FM, Aita T, Ohmaki Y, Kishimoto S, Fukumura T, Ohno Y, Ohno H, Takagi S, Saikusa K, Ohkubo I, Ohtomo A, Matsukura F, Koinuma H, Kawasaki M (2003) Jpn J Appl Phys 42:L347CrossRefGoogle Scholar
  8. 8.
    Katayama M, Ikesaka S, Kuwano J, Koinuma H, Matsumoto Y (2008) Appl Phys Lett 92:132107CrossRefGoogle Scholar
  9. 9.
    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Nat Mater 4:42CrossRefGoogle Scholar
  10. 10.
    Yaginuma S, Itaka K, Matsumoto Y, Ohnishi T, Lippmaa M, Nagata T, Chikyow T, Koinuma H (2008) Appl Surf Sci 254:2336CrossRefGoogle Scholar
  11. 11.
    Yamaguchi J, Yaginuma S, Haemori M, Itaka K, Koinuma H (2005) Jpn J Appl Phys 44:3757CrossRefGoogle Scholar
  12. 12.
    Ohashi S, Lippmaa M, Nakagawa N, Koinuma H, Kawasaki M (1999) Rev Sci Instrum 70:178CrossRefGoogle Scholar
  13. 13.
    Abe T, Ohsawa T, Katayama M, Koinuma H, Matsumoto Y (2007) Appl Phys Lett 91:061928CrossRefGoogle Scholar
  14. 14.
    Inoue S, Koinuma H, Tsuruta T (1969) J Polym Sci, Part B 7:287CrossRefGoogle Scholar
  15. 15.
    Koinuma H (2007) React Funct Polym 67:1129CrossRefGoogle Scholar
  16. 16.
    Quan ZL, Wang X, Zhao X, Wang F (2003) Polymer 44:5605CrossRefGoogle Scholar
  17. 17.
    Meerendonk WJ, Duchateau R, Koning CE, Gruter GLM (2004) Macromol Rapid Commun 25:382CrossRefGoogle Scholar
  18. 18.
    Koinuma H (2005) Thin Solid Films 486:2CrossRefGoogle Scholar
  19. 19.
    Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M, Koinuma H (1994) Science 266:1540CrossRefGoogle Scholar
  20. 20.
    Yamamoto Y, Nakajima K, Ohsawa T, Matsumoto Y, Koinuma H (2005) Jpn J Appl Phys EXL 40:L511CrossRefGoogle Scholar
  21. 21.
    Yamamoto Y, Takahashi R, Matsumoto Y, Chikyow T, Koinuma H (2004) Appl Surf Sci 223:9CrossRefGoogle Scholar
  22. 22.
    Sakakura T, Choi J, Yasuda H (2007) Chem Rev 107:2365; Darensbourg DJ (2007) Chem Rev 107:2388Google Scholar
  23. 23.
    Ree M, Bae JY, Jung JH, Shin TJ (1999) J Polym Sci: Part A 37:1863CrossRefGoogle Scholar
  24. 24.
    Sally BM, Franklin OM Jr (2008) MRS Bull 33:303; Franklin OM Jr (2009) Energy Environ Sci 2:449Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hideomi Koinuma
    • 1
    Email author
  • Kenji Itaka
    • 1
  • Yuji Matsumoto
    • 2
  • Yasuhiko Yoshida
    • 3
  • Shunichi Aikawa
    • 3
  • Kazuhiko Takeuchi
    • 4
  1. 1.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  2. 2.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan
  3. 3.Faculty of EngineeringToyo UniversityKawagoe-shiJapan
  4. 4.Research Institute for Innovation in Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations