Topics in Catalysis

, Volume 53, Issue 3–4, pp 130–140 | Cite as

Artificial Photosynthesis

  • Gion CalzaferriEmail author
Original Paper


One-dimensional channel materials, such as zeolites and mesoporous silicas, are very attractive hosts for the preparation and investigation of hierarchically organized structures, presenting a successive ordering from the molecular up to macroscopic scale. The focus of this article is on artificial photonic antenna systems and on photocatalytically active layers that have been built by incorporating organic dyes, complexes, metal cations and clusters into 1-D nanochannel materials. We show that zeolite L as a host material allows for the design and preparation of a large variety of highly organized host–guest systems. The combination of a tuneable host morphology and the possibility of obtaining highly organized molecular patterns of guests leads to a variety of potential optical and photoelectronic applications. Strongly absorbing systems exhibiting efficient FRET along the c-axis of the zeolite crystals are accessible by sequential inclusion of multiple types of dyes. These new light-harvesting materials offer unique possibilities as building blocks for solar-energy conversion devices. A complementary approach consists in integrating photochemically active substances into zeolite monolayers coated on an electrode and taking advantage of intrazeolite processes for designing a reversible electrode for photocatalytic water oxidation. The photoelectrochemical water splitting capability of systems based on Ag+/AgCl/Agn-zeolite photoanodes are discussed.


Hybrid materials Zeolites FRET Luminescence concentrator Water splitting Silver chloride Silver cluster 


  1. 1.
    Balzani V, Credi A, Venturi M (2008) Chem Sus Chem 1:26–58Google Scholar
  2. 2.
    Benniston AC, Harriman A (2008) Mater Today 11:26–34CrossRefGoogle Scholar
  3. 3.
    Calzaferri G, Huber S, Maas H, Minkowski C (2003) Angew Chem Int Ed 42:3732–3758CrossRefGoogle Scholar
  4. 4.
    Calzaferri G, Lutkouskaya K (2008) Photochem Photobiol Sci 7:879–910CrossRefGoogle Scholar
  5. 5.
    Johansson E, Choi E, Angelos S, Liong M, Zink JI (2008) J Sol-Gel Sci Technol 46:313–322CrossRefGoogle Scholar
  6. 6.
    Brühwiler D, Calzaferri G, Torres T, Ramm JH, Gartmann N, Dieu LQ, López-Duarte I, Martínez Díaz M (2009) J Mater Chem 19:8040–8067Google Scholar
  7. 7.
    Hashimoto S, Samata K, Shoji T, Taira N, Tomita T, Matsuo S (2009) Micropor Mesopor Mater 117:220–227CrossRefGoogle Scholar
  8. 8.
    Lee JS, Ha K, Lee YJ, Yoon KB (2009) Top Catal 52:119–139CrossRefGoogle Scholar
  9. 9.
    Armaroli N, Balzani V (2007) Angew Chem Int Ed 46:52–66CrossRefGoogle Scholar
  10. 10.
    Bard AJ, Fox MA (1995) Acc Chem Res 28:141–145CrossRefGoogle Scholar
  11. 11.
    Gust D, Moore TA, Moore AL (2001) Acc Chem Res 34:40–48CrossRefGoogle Scholar
  12. 12.
    Tani T (2009) J Soc Photogr Sci Technol Japan 72:88–94Google Scholar
  13. 13.
    Osterloh FE (2008) Chem Mater 20:35–54CrossRefGoogle Scholar
  14. 14.
    Currao A (2007) Chimia 61:815–819CrossRefGoogle Scholar
  15. 15.
    Pullerits T, Sundström V (1996) Acc Chem Res 29:381–389CrossRefGoogle Scholar
  16. 16.
    Förster Th (1948) Ann Phy (Leipzig) 2:55–75CrossRefGoogle Scholar
  17. 17.
    Calzaferri G, Gfeller N (1992) J Phys Chem 96:3428–3435CrossRefGoogle Scholar
  18. 18.
    Calzaferri G, Pauchard M, Maas H, Huber S, Khatyr A, Schaafsma T (2002) J Mater Chem 12:1–13CrossRefGoogle Scholar
  19. 19.
    Ramamurthy V (1991) In: Ramamurthy V (ed) Photochemistry in organized and constrained media, chap 10. VCH publishers, NY, pp 429–493Google Scholar
  20. 20.
    Turro NJ (2000) Acc Chem Res 33:637–646CrossRefGoogle Scholar
  21. 21.
    Hashimoto S (2003) J Photochem Photobiol C: Photochem Rev 4:19–49CrossRefGoogle Scholar
  22. 22.
    Abeykoon AMM, Castro-Colin M, Anokhina EV, Iliev MN, Donner W, Jacobson AJ, Moss SC (2008) Phys Rev B 77:1–10 075333CrossRefGoogle Scholar
  23. 23.
    Hashimoto S, Yamaji M (2008) Phys Chem Chem Phys 10:3124–3130CrossRefGoogle Scholar
  24. 24.
    Zhu J, Huang Y (2008) J Phys Chem C 112:14241–14246CrossRefGoogle Scholar
  25. 25.
    Schulz-Ekloff G, Wöhrle D, van Duffel B, Schoonheydt RA (2002) Micropor Mesopor Mater 51:91–138CrossRefGoogle Scholar
  26. 26.
    Corma A, Garcia H (2004) Eur J Inorg Chem 6:1143–1146CrossRefGoogle Scholar
  27. 27.
    Tsotsalas M, Busby M, Gianolio E, Aime S, De Cola L (2008) Chem Mater 20:5888–5893CrossRefGoogle Scholar
  28. 28.
    Kim HS, Pham TT, Yoon KB (2008) J Am Chem Soc 130:2134–2135CrossRefGoogle Scholar
  29. 29.
    Bussemer B, Dreiling I, Grummt UW, Mohr GJ (2009) J Photochem Photobiol A Chem 204:90–96CrossRefGoogle Scholar
  30. 30.
    Megelski S, Calzaferri G (2001) Adv Funct Mater 11:277–286CrossRefGoogle Scholar
  31. 31.
    Zabala Ruiz A, Brühwiler D, Ban T, Calzaferri G (2005) Monatshefte für Chemie 136:77–89CrossRefGoogle Scholar
  32. 32.
    Zabala Ruiz A, Brühwiler D, Dieu LQ, Calzaferri G (2008). In: Schubert U, Hüsing N, Laine R (eds) Materials syntheses a practical guide, Springer, Wien, pp 9–19, ISBN 978-3-211-75124-4Google Scholar
  33. 33.
    Ohsuna T, Slater B, Gao F, Yu J, Sakamoto Y, Zhu G, Terasaki O, Vaughan DEW, Qiu S, Catlow CRA (2004) Chem Eur J 10:5031–5040CrossRefGoogle Scholar
  34. 34.
    Larlus O, Valtchev VP (2004) Chem Mater 16:3381–3389CrossRefGoogle Scholar
  35. 35.
    Lee YJ, Lee JS, Yoon KB (2005) Micropor Mesopor Mater 80:237–246CrossRefGoogle Scholar
  36. 36.
    Lee Y, Kao CC, Kim SJ, Lee HH, Lee DR, Shin TJ, Choi JY (2007) Chem Mater 19:6252–6257CrossRefGoogle Scholar
  37. 37.
    Brent R, Anderson MW (2008) Angew Chem Int Ed 47:5327–5330CrossRefGoogle Scholar
  38. 38.
    Breck DW (1974) Zeolite molecular sieves. Wiley, NYGoogle Scholar
  39. 39.
    Baerlocher Ch, Meier WM, Olson DH (2001) Atlas of zeolite framework types, 5th edn. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Pauchard M, Devaux A, Calzaferri G (2000) Chem Eur J 6:3456–3470CrossRefGoogle Scholar
  41. 41.
    Calzaferri G (2008) Il Nuovo Cimento 123 B:1337–1367Google Scholar
  42. 42.
    Calzaferri G, Devaux A. In: Ramamurthy V, Inoue Y (eds) (2010) Supramolecular effects in photochemistry and photophysics. Wiley, New York (in press)Google Scholar
  43. 43.
    Davydov AS (1964) Usp Fiz Nauk 82:145–178Google Scholar
  44. 44.
    Busby M, Blum C, Tibben M, Fibikar S, Calzaferri G, Subramaniam V, De Cola L (2008) J Am Chem Soc 130:10970–10976CrossRefGoogle Scholar
  45. 45.
    Calzaferri G, patents EP1335879, US6932919, US7372012Google Scholar
  46. 46.
    Maas H, Calzaferri G (2002) Angew Chem Int Ed 41:2284–2288CrossRefGoogle Scholar
  47. 47.
    Yoon KB (2007) Acc Chem Res 40:29–40CrossRefGoogle Scholar
  48. 48.
    Huber S, Calzaferri G (2004) Angew Chem Int E 43:6738–6742CrossRefGoogle Scholar
  49. 49.
    Busby M, Kerschbaumer H, Calzaferri G, De Cola L (2008) Adv Mater 20:1614–1618CrossRefGoogle Scholar
  50. 50.
    Zabala Ruiz A, Li H, Calzaferri G (2006) Angew Chem Int E 45:5282–5287CrossRefGoogle Scholar
  51. 51.
    Cucinotta F, Popovic′ Z, Weiss EA, Whitesides GM, De Cola L (2009) Adv Mater 21:1142–1145CrossRefGoogle Scholar
  52. 52.
    Vohra V, Devaux A, Dieu LQ, Scavia G, Catellani M, Calzaferri G, Botta C (2009) Adv Mater 21:1146–1150CrossRefGoogle Scholar
  53. 53.
    Suárez S, Devaux A, Bañuelos J, Bossart O, Kunzmann A, Calzaferri G (2007) Adv Func Mater 17:2298–2306CrossRefGoogle Scholar
  54. 54.
    Koeppe R, Bossart O, Calzaferri G, Sariciftci NS (2007) Sol Energy Mater Sol Cells 91:986–995CrossRefGoogle Scholar
  55. 55.
    Garwin RL (1960) Rev Sci Instr 31:1010–1011CrossRefGoogle Scholar
  56. 56.
    Weber WH, Lambe J (1976) Appl Opt 15:2299–2300CrossRefGoogle Scholar
  57. 57.
    Goetzberger A, Greubel W (1977) Appl Phys 14:123–139CrossRefGoogle Scholar
  58. 58.
    Batchelder JS, Zewail AH, Cole T (1979) Appl Opt 18:3090–3110CrossRefGoogle Scholar
  59. 59.
    Kittidachachan P, Danos L, Meyer TJJ, Alderman N, Markvart T (2007) Chimia 61:780–786CrossRefGoogle Scholar
  60. 60.
    Brühwiler D, Dieu LQ, Calzaferri G (2007) Chimia 61:820–822CrossRefGoogle Scholar
  61. 61.
    Currie MJ, Mapel JK, Heidel TD, Goffri S, Baldo MA (2008) Science 321:226–228CrossRefGoogle Scholar
  62. 62.
    Calzaferri G, Li H, Brühwiler D (2008) Chem Eur J 14:7442–7449CrossRefGoogle Scholar
  63. 63.
    Calzaferri G, Kunzmann A, Brühwiler D, Bauer Ch, Patent CH-698333Google Scholar
  64. 64.
    Thomas JK (2005) Chem Rev 105:1683–1734CrossRefGoogle Scholar
  65. 65.
    Laeri F, Schueth F, Simon U, Wark M (eds) (2003) Host–guest systems based on nanoporous crystals. VCH, Weinheim, GermanyGoogle Scholar
  66. 66.
    Calzaferri G, Leiggener C, Glaus S, Schürch D, Kuge K (2003) Chem Soc Rev 32:29–37CrossRefGoogle Scholar
  67. 67.
    De Cremer G, Antoku Y, Roeffaers MBJ, Sliwa M, Van Noyen J, Smout S, Hofkens J, De Vos DE, Sels BF, Vosch T (2008) Angew Chem Int Ed 47:2813–2816CrossRefGoogle Scholar
  68. 68.
    De Cremer G, Coutiño-Gonzalez E, Roeffaers MBJ, Moens B, Ollevier J, Van der Auweraer M, Schoonheydt R, Jacobs PA, De Schryver FC, Hofkens J, De Vos DE, Sels BF, Vosch T (2009) J Am Chem Soc 131:3049–3056CrossRefGoogle Scholar
  69. 69.
    Kim SH, Thi TNN, Heo NH, Kim GH, Hong SB, Head JD, Seff K (2008) J Phys Chem C 112:11181–11193CrossRefGoogle Scholar
  70. 70.
    Sendor D, Kynast U (2002) Adv Mater 14:1570–1574CrossRefGoogle Scholar
  71. 71.
    Lezhnina M, Laeri F, Benmouhadi L, Kynast U (2006) Adv Mater 18:280–283CrossRefGoogle Scholar
  72. 72.
    Wang Y, Li H, Gu L, Gan Q, Li Y, Calzaferri G (2009) Micropor Mesopor Mater 121:1–6CrossRefGoogle Scholar
  73. 73.
    Schürch D, Currao A, Sarkar S, Hodes G, Calzaferri G (2002) J Phys Chem B 109:12764–12775CrossRefGoogle Scholar
  74. 74.
    Currao A, Reddy VR, van Veen MK, Schropp REI, Calzaferri G (2004) Photochem Photobiol Sci 3:1017–1025CrossRefGoogle Scholar
  75. 75.
    Reddy VR, Currao A, Calzaferri G (2007) J Mater Chem 17:3603–3609CrossRefGoogle Scholar
  76. 76.
    Tani T (1995) Photographic sensitivity. Oxford University Press, NYGoogle Scholar
  77. 77.
    Glaus S, Calzaferri G (1999) J Phys Chem B 103:5622–5630CrossRefGoogle Scholar
  78. 78.
    Glaus S, Calzaferri G, Hoffmann R (2002) Chem Eur J 8:1786–1794CrossRefGoogle Scholar
  79. 79.
    Currao A, Reddy VR, Calzaferri G (2004) Chem Phys Chem 5:720–724Google Scholar
  80. 80.
    Agostini G, Usseglio S, Groppo E, Uddin MJ, Prestipino C, Bordiga S, Zecchina A, Solari PL, Lamberti C (2009) Chem Mater 21:1343–1353CrossRefGoogle Scholar
  81. 81.
    Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) J Am Chem Soc 130:1676–1680CrossRefGoogle Scholar
  82. 82.
    Wang Y, Li H, Liu B, Gan Q, Dong Q, Calzaferri G, Sun Z (2008) J Solid State Chem 181:2469–2472CrossRefGoogle Scholar
  83. 83.
    Inagaki S, Othani O, Goto Y, Okamoto K, Ikai M, Yamanaka K, Tani T, Okada T (2009) Angew Chem Int Ed 48:4042–4046CrossRefGoogle Scholar
  84. 84.
    Valtchev V, Mintova S, Tsapatsis M (2009) Ordered porous solids, resent advances and prospects, Elsevier, Amsterdam, ISBN 978-0-444-53189-6Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland

Personalised recommendations