Topics in Catalysis

, 52:2007 | Cite as

Catalytic Post-Treatment of Automotive Exhaust Gas from Natural Gas Combustion Engines: Potential Interest of Perovskite Materials

Original Paper


This study reports an investigation of the surface properties of Pd-modified perovskite catalysts for NOx removal from Natural Gas engines. H2 production from reforming and water-gas-shift reactions can be profitably used for the reduction of NOx. Particular attention has been paid to the nature of interactions between Pd and LaCoO3 according to in situ reductive thermal treatments. The catalytic properties have been investigated by temperature-programmed NO desorption and temperature-programmed NO/H2 reaction. Different experiments performed on partially and extensively reduced catalysts lead to changes in surface reactivity. Interestingly, beneficial interactions with a significant selectivity enhancement to the production of nitrogen is observed on pre-reduced Pd/LaCoO3 under smooth conditions at 250 °C particularly in the presence of oxygen. More extensive reduction at 450 °C leads to the loss of the structural properties of LaCoO3 accompanied with partial segregation of CoOx and La2O3. Such structural changes lead to a detrimental effect on the catalytic performances.


DeNOx catalysis Palladium LaCoO3 NO/H2 reaction 


  1. 1.
    Tanaka H, Uenishi M, Taniguchi M, Tan I, Narita K, Kimura M, Kaneko K, Nishihata Y, Mizuki J (2006) Catal Today 117:321CrossRefGoogle Scholar
  2. 2.
    Dacquin JP, Dujardin C, Granger P (2008) J Catal 253:37CrossRefGoogle Scholar
  3. 3.
    Costa CN, Stathopoulos VN, Belessi VC, Efstathiou AM (2001) J Catal 197:350CrossRefGoogle Scholar
  4. 4.
    Costa CN, Savva PG, Andronikou C, Lambrou PS, Polychronopoulou K, Belessi VC, Stathopoulos VN, Pomonis PJ, Efstathiou AM (2002) J Catal 209:456CrossRefGoogle Scholar
  5. 5.
    Ueda A, Nakato T, Azuma M, Kobayashi T (1998) Catal Today 45:135CrossRefGoogle Scholar
  6. 6.
    Taguchi H, Yamada S, Nagao M, Ichikawa Y, Tabata K (2002) Mater Res Bull 37:69CrossRefGoogle Scholar
  7. 7.
    Di Monte R, Fornasiero P, Kaspar J, Ferrero A, Gubitosa G, Graziani M (1998) Stud Surf Sci Catal 116:559CrossRefGoogle Scholar
  8. 8.
    Gatica JM, Baker RT, Fornasiero P, Bernal S, Kaspar J (2001) J Phys Chem B 105:1191CrossRefGoogle Scholar
  9. 9.
    Dhainaut F, Pietrzik S, Granger P (2007) Appl Catal B 70:100CrossRefGoogle Scholar
  10. 10.
    Peden CHF, Belton DN, Schmieg SJ (1995) J Catal 155:204CrossRefGoogle Scholar
  11. 11.
    Dhainaut F, Pietrzik S, Granger P (2007) Catal Today 94:119Google Scholar
  12. 12.
    Dhainaut F, Pietrzik S, Granger P (2008) J Catal 258:296CrossRefGoogle Scholar
  13. 13.
    Hecker WC, Bell AT (1984) J Catal 88:289CrossRefGoogle Scholar
  14. 14.
    Dhainaut F, Pietrzyk S, Granger P (2007) Top Catal 135:42–43Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance

Personalised recommendations