Advertisement

Topics in Catalysis

, 52:2007 | Cite as

Catalytic Post-Treatment of Automotive Exhaust Gas from Natural Gas Combustion Engines: Potential Interest of Perovskite Materials

Original Paper

Abstract

This study reports an investigation of the surface properties of Pd-modified perovskite catalysts for NO x removal from Natural Gas engines. H2 production from reforming and water-gas-shift reactions can be profitably used for the reduction of NO x . Particular attention has been paid to the nature of interactions between Pd and LaCoO3 according to in situ reductive thermal treatments. The catalytic properties have been investigated by temperature-programmed NO desorption and temperature-programmed NO/H2 reaction. Different experiments performed on partially and extensively reduced catalysts lead to changes in surface reactivity. Interestingly, beneficial interactions with a significant selectivity enhancement to the production of nitrogen is observed on pre-reduced Pd/LaCoO3 under smooth conditions at 250 °C particularly in the presence of oxygen. More extensive reduction at 450 °C leads to the loss of the structural properties of LaCoO3 accompanied with partial segregation of CoO x and La2O3. Such structural changes lead to a detrimental effect on the catalytic performances.

Keywords

DeNOx catalysis Palladium LaCoO3 NO/H2 reaction 

Notes

Acknowledgements

We thank the Institute of Research in Industrial Environment supported by Region Nord-Pas-de-Calais and the Ademe for a grant (Y. Renème).

References

  1. 1.
    Tanaka H, Uenishi M, Taniguchi M, Tan I, Narita K, Kimura M, Kaneko K, Nishihata Y, Mizuki J (2006) Catal Today 117:321CrossRefGoogle Scholar
  2. 2.
    Dacquin JP, Dujardin C, Granger P (2008) J Catal 253:37CrossRefGoogle Scholar
  3. 3.
    Costa CN, Stathopoulos VN, Belessi VC, Efstathiou AM (2001) J Catal 197:350CrossRefGoogle Scholar
  4. 4.
    Costa CN, Savva PG, Andronikou C, Lambrou PS, Polychronopoulou K, Belessi VC, Stathopoulos VN, Pomonis PJ, Efstathiou AM (2002) J Catal 209:456CrossRefGoogle Scholar
  5. 5.
    Ueda A, Nakato T, Azuma M, Kobayashi T (1998) Catal Today 45:135CrossRefGoogle Scholar
  6. 6.
    Taguchi H, Yamada S, Nagao M, Ichikawa Y, Tabata K (2002) Mater Res Bull 37:69CrossRefGoogle Scholar
  7. 7.
    Di Monte R, Fornasiero P, Kaspar J, Ferrero A, Gubitosa G, Graziani M (1998) Stud Surf Sci Catal 116:559CrossRefGoogle Scholar
  8. 8.
    Gatica JM, Baker RT, Fornasiero P, Bernal S, Kaspar J (2001) J Phys Chem B 105:1191CrossRefGoogle Scholar
  9. 9.
    Dhainaut F, Pietrzik S, Granger P (2007) Appl Catal B 70:100CrossRefGoogle Scholar
  10. 10.
    Peden CHF, Belton DN, Schmieg SJ (1995) J Catal 155:204CrossRefGoogle Scholar
  11. 11.
    Dhainaut F, Pietrzik S, Granger P (2007) Catal Today 94:119Google Scholar
  12. 12.
    Dhainaut F, Pietrzik S, Granger P (2008) J Catal 258:296CrossRefGoogle Scholar
  13. 13.
    Hecker WC, Bell AT (1984) J Catal 88:289CrossRefGoogle Scholar
  14. 14.
    Dhainaut F, Pietrzyk S, Granger P (2007) Top Catal 135:42–43Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance

Personalised recommendations