Topics in Catalysis

, 52:1791 | Cite as

Thermal Ageing Induced Effects on Pd/LaFeO3 for NOx Reduction by Hydrocarbons: Influence of the Preparation Method

  • Pierre Miquel
  • Yas Yamin
  • Karine Lombaert
  • Christophe DujardinEmail author
  • Pascal Granger
Original Paper


The influence of the support synthesis for the preparation of supported Pd/LaFeO3 perovskite based catalysts and the nature of the palladium precursor on the catalytic performances in the selective reduction of NO to N2 by hydrocarbons have been investigated. According to the preparation method, subsequent surface and bulk characterisation revealed significant changes in the degree of dispersion and the chemical environment of oxidic palladium species depending on the extent of interaction with the support. Pd nitrate precursor leads to the stabilisation of the Pd surface concentration. The metal support interactions thus obtained strongly enhance the catalytic performances, particularly the resistance to thermal ageing whereas sol–gel synthesis produces the higher support activity.


deNOx Perovskite Selective catalytic reduction by hydrocarbons HC-SCR Pd/LaFeO3 



We gratefully acknowledge Mrs L. Burylo, Mrs M. Frere and Dr. L. Gengembre who conducted XRD and XPS measurements.


  1. 1.
    Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance informationGoogle Scholar
  2. 2.
    Houel V, Millington P, Rajaram R, Tsolakis A (2007) Appl Catal B 73:203CrossRefGoogle Scholar
  3. 3.
    Breen JP, Burch R, Hardacre C, Hill CJ, Krutzsch B, Bandl-Konrad B, Jobson E, Cider L, Blakeman PG, Peace LJ, Twigg MV, Preis M, Gottschling M (2007) Appl Catal B 70:36CrossRefGoogle Scholar
  4. 4.
    Voorhoeve RJH, Remeika JP, Trimble LE, Cooper AS, Disalvo FJ, Gallagher PK (1975) J Solid State Chem 14:395CrossRefGoogle Scholar
  5. 5.
    Tanaka H, Tan I, Sato N, Narita K, Kimura M, Uenishi M, Kajita N, Taniguchi M (2003) SAE Technical Paper Series 2003-01-0813Google Scholar
  6. 6.
    Wu X, Xu L, Weng D (2004) Catal Today 90:199CrossRefGoogle Scholar
  7. 7.
    Costa CN, Stathopoulos VN, Belessi VC, Efstathiou AM (2001) J Catal 197:350CrossRefGoogle Scholar
  8. 8.
    Salem I, Courtois X, Corbos EC, Marecot P, Duprez D (2008) Catal Commun 9:664CrossRefGoogle Scholar
  9. 9.
    Giraudon J-M, Elhachimi A, Wyrwalski F, Siffert S, Aboukais A, Lamonier J-F, Leclercq G (2007) Appl Catal B 75:157CrossRefGoogle Scholar
  10. 10.
    Briggs D, Seah MP (1990) Practical surface analysis, vol 1, 2nd edn. Wiley, ChichesterGoogle Scholar
  11. 11.
    Barr TL (1978) J Phys Chem 82:1801CrossRefGoogle Scholar
  12. 12.
    Uenishi M, Taniguchi M, Tanaka H, Kimura M, Nishihata Y, Mizuki J, Kobayashi T (2004) Appl Catal B 57:265Google Scholar
  13. 13.
    Binet C, Jadi A, Lavalley J-C (1989) J Chim Phys Phys Chim Biol 86:451Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pierre Miquel
    • 1
    • 2
  • Yas Yamin
    • 1
  • Karine Lombaert
    • 2
  • Christophe Dujardin
    • 1
    Email author
  • Pascal Granger
    • 1
  1. 1.UCCS, UMR 8181, Bât C3, Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  2. 2.RENAULT SAS, Direction de l’Ingénierie des MATériauxLardyFrance

Personalised recommendations