Advertisement

Topics in Catalysis

, Volume 52, Issue 10, pp 1388–1399 | Cite as

Mechanistic Investigation of Co Containing NO x Traps

  • Rohit Vijay
  • Hideaki Sakurai
  • Christopher M. Snively
  • Jochen LauterbachEmail author
Original Paper

Abstract

Co-containing NO x storage and reduction catalysts were investigated to identify the mechanism of Co promotion. X-ray diffraction and temperature programmed reduction demonstrated that Co exists in a highly oxidized state (Co3O4) and that the surface oxygen could be removed from the catalyst a typical operating conditions around 300 °C. Electron microscopy showed that Co is more uniformly distributed over the catalyst surface, as compared to Pt, with particle sizes ranging between 20 and 80 nm. In situ IR studies illustrated that NO x storage occurs on Co-containing NSR catalyst via formation of nitrites and nitrates as surface intermediates. Finally, it was found that, similar to Pt, the addition of Co to Ba catalysts enhances the nitrite to nitrate transition rate and also increases the overall formation of nitrates. Therefore, the promotional effect shown by Co is the result of the combination of increased NO to NO2 oxidation and improved surface area for NO2 spillover to the Ba storage sites.

Keywords

NSR catalysts FT-IR spectroscopy NOx storage and reduction Temperature programmed reduction (TPR) X-ray diffraction Scanning electron microscopy (SEM) Energy dispersive spectroscopy (EDS) 

References

  1. 1.
    Heck RM, Farrauto RJ (1995) Catalytic air pollution control: commercial technology. Van Nostrand Reinhold, New York, p 193Google Scholar
  2. 2.
    Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) Catal Today 27:63CrossRefGoogle Scholar
  3. 3.
    Matsumoto S (1996) Catal Today 29:43CrossRefGoogle Scholar
  4. 4.
    Matsumoto S, Ikeda Y, Suzuki H, Ogai M, Miyoshi N (2000) Appl Catal B 25:115CrossRefGoogle Scholar
  5. 5.
    Hirata H, Hachisuka I, Ikeda Y, Tsuji S, Matsumoto S (2001) Top Catal 16/17:145CrossRefGoogle Scholar
  6. 6.
    Li XG, Meng M, Lin PY, Fu YL, Hu TD, Xie YN, Zhang J (2003) Top Catal 22:111CrossRefGoogle Scholar
  7. 7.
    Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P (2002) Catal Today 75:431CrossRefGoogle Scholar
  8. 8.
    Bjorn Westerberg EF (2001) J Mol Catal A: Chem 165:249CrossRefGoogle Scholar
  9. 9.
    Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) J Phys Chem B 105:12732CrossRefGoogle Scholar
  10. 10.
    Lietti L, Forzatti P, Nova I, Tronconi E (2001) J Catal 204:175CrossRefGoogle Scholar
  11. 11.
    Anderson JA, Bachiller-Baeza B, Fernandez-Garcia M (2003) Phys Chem Chem Phys 5:4418CrossRefGoogle Scholar
  12. 12.
    James D, Fourre E, Ishii M, Bowker M (2003) Appl Catal B 45:147CrossRefGoogle Scholar
  13. 13.
    Castoldi L, Nova I, Lietti L, Forzatti P (2004) Catal Today 96:43CrossRefGoogle Scholar
  14. 14.
    Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G (1999) J Catal 183:196CrossRefGoogle Scholar
  15. 15.
    Salasc S, Skoglundh M, Fridell E (2002) Appl Catal B 36:145CrossRefGoogle Scholar
  16. 16.
    Scotti A, Nova I, Tronconi E, Castoldi L, Lietti L, Forzatti P (2004) Ind Eng Chem Res 43:4522CrossRefGoogle Scholar
  17. 17.
    Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F, Ghiotti G (2004) J Catal 222:377CrossRefGoogle Scholar
  18. 18.
    Graham GW, Jen HW, Chun W, Sun HP, Pan XQ, McCabe RW (2004) Catal Lett 93:129CrossRefGoogle Scholar
  19. 19.
    Fanson PT, Horton MR, Delgass WN, Lauterbach J (2003) Appl Catal B 46:393CrossRefGoogle Scholar
  20. 20.
    Hendershot RJ, Fanson PT, Snively CM, Lauterbach J (2003) Angew Chem Int Ed 42:1152CrossRefGoogle Scholar
  21. 21.
    Hess C, Lunsford JH (2002) J Phys Chem B 106:6358CrossRefGoogle Scholar
  22. 22.
    Hess C, Lunsford JH (2003) J Phys Chem B 107:1982CrossRefGoogle Scholar
  23. 23.
    Han P-H, Lee Y-K, Han S-M, Rhee H-K (2001) Top Catal 16/17:165CrossRefGoogle Scholar
  24. 24.
    Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433CrossRefGoogle Scholar
  25. 25.
    Huang HY, Long RQ, Yang RT (2001) Appl Catal B 33:127CrossRefGoogle Scholar
  26. 26.
    Yamazaki K, Suzuki T, Takahashi N, Yokota K, Suguira M (2001) Appl Catal B 30:459CrossRefGoogle Scholar
  27. 27.
    Vijay R, Hendershot RJ, Rivera-Jiménez SM, Rogers WB, Feist BJ, Snively CM, Lauterbach J (2005) Catal Commun 6:167CrossRefGoogle Scholar
  28. 28.
    Vijay R, Snively CM, Lauterbach J (2006) J Catal 243:368CrossRefGoogle Scholar
  29. 29.
    Hendershot RJ, Rogers WB, Snively CM, Ogunnaike BA, Lauterbach J (2004) Catal Today 98:375CrossRefGoogle Scholar
  30. 30.
    Hendershot RJ (2004) Statitically guided high-throughput experimentation of NOx storage and reduction. Doctoral thesis, University of Delaware, p 57Google Scholar
  31. 31.
    Fanson PT (2002) FTIR analysis of supported catalyst systems related to the reduction of automotive exhaust emissions. Doctoral thesis, Purdue University-West Lafayette, p 21Google Scholar
  32. 32.
    Kantcheva M, Vakkasoglu AS (2004) J Catal 223:352CrossRefGoogle Scholar
  33. 33.
    Jansson J (2000) J Catal 194:55CrossRefGoogle Scholar
  34. 34.
    Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V (2002) J Catal 211:387Google Scholar
  35. 35.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175CrossRefGoogle Scholar
  36. 36.
    Yao Y-FY (1974) J Catal 33:108CrossRefGoogle Scholar
  37. 37.
    Mergler YJ, Aalst Av, Delft Jv, Nieuwenhuys BE (1996) Appl Catal B 10:245CrossRefGoogle Scholar
  38. 38.
    Lin P-Y, Skoglundh M, Löwendahl L, Otterstedt J-E, Dahl L, Jansson K, Nygren M (1995) Appl Catal B 6:237CrossRefGoogle Scholar
  39. 39.
    Thormählen P, Skoglundh M, Fridell E, Andersson B (1999) J Catal 188:300CrossRefGoogle Scholar
  40. 40.
    Arnoldy P, Moulijn JA (1985) J Catal 93:38CrossRefGoogle Scholar
  41. 41.
    Jansson J, Skoglundh M, Fridell E, Thormählen P (2001) Top Catal 16/17:385CrossRefGoogle Scholar
  42. 42.
    Chuang TJ, Brundle CR, Rice DW (1976) Surf Sci 59:413CrossRefGoogle Scholar
  43. 43.
    Epling WS, Campbell LE, Yezerets A, Currier NC, Parks JE (2004) Catal Rev 46:163Google Scholar
  44. 44.
    Huang HY, Long RQ, Yang RT (2001) Energy Fuels 15:205CrossRefGoogle Scholar
  45. 45.
    Abdulhamid H, Fridell E, Skoglundh M (2006) Appl Catal B 62:319CrossRefGoogle Scholar
  46. 46.
    Su Y, Amiridis MD (2004) Catal Today 96:31CrossRefGoogle Scholar
  47. 47.
    Hendershot RJ, Vijay R, Snively CM, Lauterbach J (2006) Appl Catal B 70:160CrossRefGoogle Scholar
  48. 48.
    Olsson L, Fridell E, Skoglundh M, Andersson B (2002) Catal Today 73:263CrossRefGoogle Scholar
  49. 49.
    Olsson L, Persson H, Fridell E, Skoglundh M, Andersson B (2001) J Phys Chem B 105:6895CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rohit Vijay
    • 1
  • Hideaki Sakurai
    • 2
  • Christopher M. Snively
    • 1
    • 3
  • Jochen Lauterbach
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of DelawareNewarkUSA
  2. 2.Mitsubishi Materials Corporation, Central Research Institute Naka Research CenterNaka-GunJapan
  3. 3.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations