Topics in Catalysis

, Volume 52, Issue 10, pp 1410–1424

Applying Dynamic and Synchronous DRIFTS/EXAFS to the Structural Reactive Behaviour of Dilute (≤1 wt%) Supported Rh/Al2O3 Catalysts using Quick and Energy Dispersive EXAFS

Original Paper

Abstract

Examples of the application of a synchronous DRIFTS/EXAFS/mass spectrometry (MS) methodology to the study of dilute (≤ 1wt%) Rh/Al2O3 catalysts are discussed. These are used to explore the potential of this approach for understanding of the behaviour of supported metal catalysts “in a single shot”, and in the often preferred regime of low (<1 wt%) loadings of active precious metals. Firstly, the sequential interaction of NO (323 K) and then CO (373 K) with reduced, 0.5 wt% Rh/Al2O3 catalysts is studied. Infrared spectroscopy indicates that two surface species (a bent Rh(NO) and Rh(CO)2 species) can be created using this sequential gas absorption/reaction method with minimal interference from other carbonyl or nitrosyl species. As such the potential for a reliable structural characterisation of the local structure of these species by EXAFS becomes possible. However, in contrast to the infrared spectroscopy, analysis of the EXAFS data also indicates that, even for such low loaded Rh systems, oxidative disruption of the Rh by the NO and CO is not complete and that bonding typical of small Rh clusters persists in both cases. The possible sources of this apparent spectroscopic difference of opinion are discussed. Secondly, 1wt% Rh/Al2O3 catalysts are studied using dispersive EXAFS at 573 K with 100 ms time resolution, during a redox switching event involving a reducing feedstock comprising just 3000 ppm of CO and 3000 ppm of NO. It is shown that highly useful and insightful time resolved and synchronously obtained XANES/EXAFS/IR data can be obtained even in this dilute Rh and more “realistic” case. Additional data, regarding the overall performance of the experiment, as currently implemented at the ESRF, along with a discussion of where enhanced performance might be yet still be gained, are also given.

Keywords

Synchronous DRIFTS/EXAFS Quick and energy dispersive EXAFS Time resolved CO NO reaction 

References

  1. 1.
    Weckhuysen BM (2003) Phys Chem Chem Phys 5:4351–4360CrossRefGoogle Scholar
  2. 2.
    Boccaleri F, Carniato F, Croce G et al (2007) J Appl Cryst 40:684–693CrossRefGoogle Scholar
  3. 3.
    Tinnemans SJ, Mesu JG, Kervinen K, Visser T, Nijhuis TA, Beale AM, Keller DE, van der Eerden AMJ, Weckhuysen BM (2006) Catal Today 113:3–15CrossRefGoogle Scholar
  4. 4.
    Beale AM, van der Eerden AMJ, Kervinen K, Newton MA, Weckhuysen BM (2005) Chem Commun 301:5–3107Google Scholar
  5. 5.
    Briois V, Lutzenkirchen-Hecht D, Villain F, Fonda E, Belon S, Griesebock B, Frahm R, Phys J (2005) J Phys Chem A 109:320–329CrossRefGoogle Scholar
  6. 6.
    Newton MA, Jyoti B, Dent AJ, Fiddy SG, Evans J (2004) Chem Commun 21:2382CrossRefGoogle Scholar
  7. 7.
    Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Catal Today 126:64–72CrossRefGoogle Scholar
  8. 8.
    Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Phys Chem Chem Phys 9:246–249CrossRefGoogle Scholar
  9. 9.
    Dent AJ, Evans J, Fiddy SG, Jyoti B, Newton MA, Tromp M (2007) Angew Chem 46:5356–5358CrossRefGoogle Scholar
  10. 10.
    Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) J Mater Sci 42:3288–3298CrossRefGoogle Scholar
  11. 11.
    Newton MA, Belver C, Martínez-Arias A, Fernández-García M (2007) Nat Mater 6:528–532CrossRefGoogle Scholar
  12. 12.
    Newton MA, Belver-Coldeira C, Martínez-Arias A, Fernández-García M (2007) Angew Chem Int Ed 46:8629–8631CrossRefGoogle Scholar
  13. 13.
    Newton MA, Jyoti B, Dent AJ, Diaz-Moreno S, Fiddy SG, Evans J (2006) Chem Eur J 12:1975CrossRefGoogle Scholar
  14. 14.
    Newton MA, Fiddy SG, Guilera G, Jyoti B, Evans J (2005) Chem Comm 1:118CrossRefGoogle Scholar
  15. 15.
    Newton MA, Burnaby DG, Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Neisius T, Pascarelli S, Turin S (2001) J Phys Chem A 105:5965CrossRefGoogle Scholar
  16. 16.
    Newton MA, Burnaby DG, Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Neisius T, Turin S (2002) J Phys Chem B 106:4214CrossRefGoogle Scholar
  17. 17.
    Labiche J-C, Mathon O, Pascarelli S, Newton MA, Guilera Ferre G, Curfs C, Vaughan G, Homs A, Fernandez Carreiras D (2007) Rev Sci Instrum 78:091301CrossRefGoogle Scholar
  18. 18.
    Newton MA (2007) J Synchrotron Rad 14:372–381CrossRefGoogle Scholar
  19. 19.
    Binsted N (1988) PAXAS: programme for the analysis of X-ray adsorption spectra. University of Southampton, UKGoogle Scholar
  20. 20.
    Binsted N (1998) EXCURV98, CCLRC Daresbury laboratory computer programmeGoogle Scholar
  21. 21.
    M Cavers, JM Davidson, IR Harkness, GS McDougall, LVC Rees (1999) In: Froment GF, Waugh KC (eds) Reaction kinetics and the development of catalytic processes, vol 122. Elsevier, Amsterdam, p 65Google Scholar
  22. 22.
    CN Satterfield, (1996) In: Heterogeneous catalysis in industrial practice, Krieger Publishing, USAGoogle Scholar
  23. 23.
    Arai H, Tominaga H (1976) J Catal 43:131–142CrossRefGoogle Scholar
  24. 24.
    Liang J, Wang HP, Spicer LD (1985) J Phys Chem 89:5840CrossRefGoogle Scholar
  25. 25.
    Srinivas G, Chuang SSC, Debnath S (1994) J Catal 148:748CrossRefGoogle Scholar
  26. 26.
    Dictor R (1988) J Catal 109:89CrossRefGoogle Scholar
  27. 27.
    Hyde EA, Rudham R, Rochester CH (1988) J Chem Soc Faraday Trans 80:531Google Scholar
  28. 28.
    Anderson JA, Millar GJ, Rochester CH (1990) J Chem Soc Faraday Trans 86:571CrossRefGoogle Scholar
  29. 29.
    Yang AC, Garland CW (1957) J Phys Chem 61:1044CrossRefGoogle Scholar
  30. 30.
    Yao C, Rothschild WG (1978) J Chem Phys 68:4774CrossRefGoogle Scholar
  31. 31.
    Yates JT, Duncan TM, Worley SD, Vaughan RW (1979) J Chem Phys 70:1219CrossRefGoogle Scholar
  32. 32.
    Antoniewicz PR, Cavanagh RR, Yates JT (1980) J Chem Phys 73:3456CrossRefGoogle Scholar
  33. 33.
    Basu P, Panayotov D, Yates JT (1988) J Am Chem Soc 110:2074CrossRefGoogle Scholar
  34. 34.
    Cavanagh RR, Yates JT (1981) J Chem Phys 74:4150CrossRefGoogle Scholar
  35. 35.
    Rice CA, Worley SD, Curtis CW, Guin JA, Tarrer AR (1981) J Chem Phys 74:6487CrossRefGoogle Scholar
  36. 36.
    Van’t Blik HFJ, Van Zon JBAD, Huizinga T, Vis JC, Koningsberger DC, Prins R (1983) J Phys Chem 87:2264CrossRefGoogle Scholar
  37. 37.
    Suzuki A, Inada Y, Yamaguchi A, Chihara T, Yuasa M, Nomura M, Iwasawa Y (2003) Angew Chem Int Ed 42:4795CrossRefGoogle Scholar
  38. 38.
    Bennett RA, McCavish ND, Basham M, Dhanak V, Newton MA (2007) Phys Rev Lett 98:056102CrossRefGoogle Scholar
  39. 39.
    Cavers M, Davidson JM, Harkness IR, Rees LVC, McDougall GS (1999) J Catal 188:426CrossRefGoogle Scholar
  40. 40.
    Kiss J, Solymosi F (1998) J Catal 179:277CrossRefGoogle Scholar
  41. 41.
    Krisnamurthy R, Chuang SSC, Balakos MW (1995) J Catal 157:512CrossRefGoogle Scholar
  42. 42.
    Krisnamurthy R, Chuang SSC, Balakos MW (1996) J Phys Chem 99:16727CrossRefGoogle Scholar
  43. 43.
    Solymosi F, Bansagi T (2001) J Catal 202:205CrossRefGoogle Scholar
  44. 44.
    Schmatloch V, Jirka I, Kruse N (1991) J Chem Phys 100:8471CrossRefGoogle Scholar
  45. 45.
    Sellmer C, Schmatloch V, Kruse N (1995) Catal Letts 35:165CrossRefGoogle Scholar
  46. 46.
    Andersson S, Frank M, Sandell A (1998) J Chem Phys 108:2967CrossRefGoogle Scholar
  47. 47.
    Mavrikakis M, Rempel J, Greeley J, Hansen LB, Norskov JK (2002) J Chem Phys 117:6737CrossRefGoogle Scholar
  48. 48.
    Mavrikakis M, Baumer M, Freund HJ, Norskov JK (2002) Catal Letts 81:153CrossRefGoogle Scholar
  49. 49.
    Als-Nielsen J, Grubel G, Clausen BS (1995) Nucl Instrum Methods B 97:522CrossRefGoogle Scholar
  50. 50.
    Grunwaldt JD, Lutzenkirchen-Hecht D, Richwin M, Grundmann S, Clausen BS, Frahm R (2001) J Phys Chem B 105:5161CrossRefGoogle Scholar
  51. 51.
    Duncan WD, Williams GP (1983) Appl Opt 22:2914CrossRefGoogle Scholar
  52. 52.
    Williams GP, Hircshmugl CJ, Kneedler EM, Sullivan EA, Siddons DP, Chabal YJ, Hoffman F, Moeller KD (1989) Rev Sci Inst 60:2176CrossRefGoogle Scholar
  53. 53.
    Williams GP, Dumas P (eds) (1997) Accelerator-based infrared sources and applications. Proceeding of the SPIE, 3153Google Scholar
  54. 54.
    Jamin N, Dumas P, Moncuit J, Fridman WH, Teillaud JL, Carr GL, Williams GP (1998) PNAS 95:4837CrossRefGoogle Scholar
  55. 55.
    Guidi MC, Piccinini M, Marcelli A, Nucara A, Calvani P, Burattini E (2005) J Opt Soc Am A 22:2810CrossRefGoogle Scholar
  56. 56.
    Marcelli A, Private communicationGoogle Scholar
  57. 57.
    Stavitski E, Cox MHF, Swart I, De Groot FMD, Weckhuysen BM (2008) Angew Chem Intl Ed 47:1CrossRefGoogle Scholar
  58. 58.
    Stötzel J, Lützenkirchen-Hecht D, Fonda E, De Oliveira N, Briois V, Frahm R (2008) Rev Sci Instr 79:083107CrossRefGoogle Scholar
  59. 59.
    Frahm R, Stötzel J, Lützenkirchen-Hecht D (2009) Synchrotron Radiat News 22(2):6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations