Topics in Catalysis

, Volume 52, Issue 10, pp 1448–1458 | Cite as

Mechanistic Investigation of Heterogeneous Catalysis by Transient Infrared Methods

  • Steven S. C. Chuang
  • Felipe Guzman
Original Paper


This paper provides an overview of the use of various transient infrared methods to determine the role of infrared observable species in the mechanisms of the NO–CO reaction, heterogeneous ethylene hydroformylation, and photocatalytic oxidation of ethanol. The transient infrared methods with a judicious choice of ways in changing the concentration of reactants and their isotope counterparts produce responses, allowing (i) identification of the spectators, (ii) determination of active adsorbed species, and (iii) verification of kinetic models and their parameters. The method has also been recently extended to monitor infrared absorbance of photogenerated electrons during photocatalysis, correlating variation in the concentration of photogenerated electrons and adsorbed species. The specific discussion focuses on limitations of the approaches and the type of mechanistic information that can be obtained.


Transient infrared methods NO–CO reaction Ethylene hydroformylation spectators Photocatalytic oxidation of ethanol 


  1. 1.
    Rabo JA (1993) Proceedings of the 10th international congress on catalysis, part A, international congress on catalysis. Akademiai Kiado, Budapest, p 1Google Scholar
  2. 2.
    Tamaru K (1991) Dynamic relaxation methods in heterogeneous catalysis. In Anderson JR, Boundar M (eds) Catalysis: science and technology, vol 9. Springer, Berlin, Heidelberg, New York, p 87Google Scholar
  3. 3.
    Haller GL, Coulston GW (1991) Dynamics of heterogeneously catalyzed reactions. In Anderson JR, Boundar M (eds) Catalysis: science and technology, vol 9. Springer, Berlin, Heidelberg, New York, p 131Google Scholar
  4. 4.
    Tamaru K (2004) Proc Jpn Acad Ser B 80:119Google Scholar
  5. 5.
    Chuang SSC, Balakos MW, Krishnamurthy R, Srinivas G (1994) Stud Surf Sci Catal 81:467Google Scholar
  6. 6.
    Chuang SSC, Brundage MA, Balakos MW (1997) Appl Catal A 151:333Google Scholar
  7. 7.
    Somorjai GA (1990) J Phys Chem 94:1013Google Scholar
  8. 8.
    Campbell CT (1989) Adv Catal 36:1Google Scholar
  9. 9.
    Madix RJ, Canning NDS (1988) J Phys Chem 88:2437Google Scholar
  10. 10.
    Somorjai GA (1990) Catal Lett 7:169Google Scholar
  11. 11.
    Somorjai GA, McCrea KR, Zhu J (2002) Top Catal 18:157Google Scholar
  12. 12.
    Barteau MA (1993) J Vac Sci Technol A 11:2162Google Scholar
  13. 13.
    Yamada T, Onishi T, Tamaru K (1985) Surf Sci 157:L389Google Scholar
  14. 14.
    Winslow P, Bell AT (1984) J Catal 86:158Google Scholar
  15. 15.
    Lombardo SJ, Bell AT (1991) Surf Sci 245:213Google Scholar
  16. 16.
    Shido T, Iwasawa Y (1993) J Catal 141:71Google Scholar
  17. 17.
    Iwasawa Y (1997) Acc Chem Res 30:103Google Scholar
  18. 18.
    Tada M, Taniike T, Iwasawa Y (2007) J Phys Chem C 111:11663Google Scholar
  19. 19.
    Akhter S, White JM (1988) J Vac Sci Technol A 6:864Google Scholar
  20. 20.
    Srinivas G, Chuang SSC, Debnath S (1994) J Catal 148:748Google Scholar
  21. 21.
    Srinivas G, Chuang SSC (1994) Preprint of NOx reduction symposium. In ACS national meeting. Division of Petroleum Chemistry, Inc., Washington DC, p 167Google Scholar
  22. 22.
    Solymosi F, Bansagi T (1993) J Phys Chem 97:10133Google Scholar
  23. 23.
    Krause KR, Schmidt LD (1993) J Catal 140:424Google Scholar
  24. 24.
    Delgass WN, Haller GL, Kellerman R, Lunsford JH (1979) Spectroscopy in heterogeneous catalysis. Academic Press, New York, p 341Google Scholar
  25. 25.
    Vannice MA (1982) In: Anderson JR, Boundar M (eds) Catalysis: science and technology, vol 3. Springer, New York, p 139Google Scholar
  26. 26.
    Yates JTJ, Madey TE (1987) Vibrational spectroscopy of molecules on surfaces. Plenum Press, New YorkGoogle Scholar
  27. 27.
    Airaksinen SMK, Krause AOI, Sainio J, Lahtinen J, Chao K.-j, Guerrero-Perez MO, Banares MA (2003) Phys Chem Chem Phys 5:4371Google Scholar
  28. 28.
    Hicks RF, Kellner CS, Savatsky BJ, Hecker WC, Bell AT (1981) J Catal 71:216Google Scholar
  29. 29.
    Kaul DJ, Wolf EE (1984) J Catal 89:348Google Scholar
  30. 30.
    Li YE, Gonzalez RD (1988) Catal Lett 1:229Google Scholar
  31. 31.
    Venter JJ, Vannice MA (1989) J Phys Chem 93:4158Google Scholar
  32. 32.
    Edwards JF, Schrader GL (1981) Appl Spectrosc 35:559Google Scholar
  33. 33.
    Moser WR, Cnossen JE, Wang AW, Krouse SA (1985) J Catal 95:21Google Scholar
  34. 34.
    Dalla Betta RA, Shelef M (1977) J Catal 48:111Google Scholar
  35. 35.
    Arakawa H, Fukushima T, Ichikawa M (1986) Appl Spectrosc 40:884Google Scholar
  36. 36.
    King DL (1980) J Catal 61:77Google Scholar
  37. 37.
    Rode EJ, Davis ME, Hanson BE (1985) J Catal 96:574Google Scholar
  38. 38.
    Fujimoto K, Kameyama M, Kunugi T (1980) J Catal 61:7Google Scholar
  39. 39.
    Li YE, Gonzalez RD (1988) J Phys Chem 92:1589Google Scholar
  40. 40.
    Brundage MA, Chuang SSC (1996) J Catal 164:94Google Scholar
  41. 41.
    Brundage MA, Chuang SSC (1998) J Catal 174:164Google Scholar
  42. 42.
    Shannon SL, Goodwin JG Jr (1995) Chem Rev (Washington, DC) 95:677Google Scholar
  43. 43.
    Lohitharn N, Goodwin JG (2008) J Catal 257:142Google Scholar
  44. 44.
    Fogler HS (2006) Elements of chemical reaction engineering. Prentice Hall. Person Ed. Inc, Upper Saddle RiverGoogle Scholar
  45. 45.
    Levenspiel O (1998) Chemical reaction engineering, 3rd edn. p 656Google Scholar
  46. 46.
    Koerts T, Van Santen RA (1992) J Catal 134:13Google Scholar
  47. 47.
    De Pontes M, Yokomizo GH, Bell AT (1987) J Catal 104:147Google Scholar
  48. 48.
    Hoost TE, Goodwin JG Jr (1992) J Catal 134:678Google Scholar
  49. 49.
    Biloen P, Helle JN, Van den Berg FGA, Sachtler WMH (1983) J Catal 81:450Google Scholar
  50. 50.
    Peil KP, Goodwin JG Jr, Marcelin G (1989) J Phys Chem 93:5977Google Scholar
  51. 51.
    Srinivas G, Chuang SSC, Balakos MW (1993) AIChE J 39:530CrossRefGoogle Scholar
  52. 52.
    Efstathiou AM, Bennett CO (1989) J Catal 120:137Google Scholar
  53. 53.
    Krishna KR, Bell AT (1993) J Catal 139:104Google Scholar
  54. 54.
    Mims CA, McCandlish LE (1987) J Phys Chem 91:929Google Scholar
  55. 55.
    Smith MR, Ozkan US (1993) J Catal 142:226Google Scholar
  56. 56.
    Happel J (1986) Isotopic assessment of heterogeneous catalysis. Academic Press, New YorkGoogle Scholar
  57. 57.
    Balakos MW, Chuang SSC, Srinivas G (1993) J Catal 140:281CrossRefGoogle Scholar
  58. 58.
    Schwarz JA, Falconer JL (1990) Catal Today 7:1990Google Scholar
  59. 59.
    Balakos MW, Chuang SSC (1995) J Catal 151:253Google Scholar
  60. 60.
    Chuang SSC, Krishnamurthy R, Srinivas G (1995) ACS Symp Ser 587:183Google Scholar
  61. 61.
    Taylor KC (1993) Catal Rev—Sci Eng 35:457Google Scholar
  62. 62.
    Farrauto RJ, Heck RM, Speronello BK (1992) Chem Eng News 70:34Google Scholar
  63. 63.
    Iwamoto M (1990) Future opportunities in catalytic and separation technology. Elsevier, Amsterdam, Oxford, New York, Tokyo, p 121Google Scholar
  64. 64.
    Hecker WC, Bell AT (1983) J Catal 84:200Google Scholar
  65. 65.
    Oh SH, Fisher GB, Carpenter JE, Goodman DW (1986) J Catal 100:360Google Scholar
  66. 66.
    Schwartz SB, Fisher GB, Schmidt LD (1988) J Phys Chem 92:389Google Scholar
  67. 67.
    Zaera F (2002) J Phys Chem B 106:4043Google Scholar
  68. 68.
    Rainer DR, Vesecky SM, Koranne M, Oh WS, Goodman DW (1997) J Catal 167:234Google Scholar
  69. 69.
    Krishnamurthy R, Chuang SSC, Balakos MW (1995) J Catal 157:512Google Scholar
  70. 70.
    Solymosi F, Bansagi T, Novak E (1988) J Catal 112:183Google Scholar
  71. 71.
    Bajusz I-G, Goodwin JG Jr, Galloway D, Greenlay N (1998) Langmuir 14:1846Google Scholar
  72. 72.
    Yu Y, He H, Feng Q, Gao H, Yang X (2004) Appl Catal B 49:159Google Scholar
  73. 73.
    Chuang SSC, Pien SI (1992) J Catal 135:618Google Scholar
  74. 74.
    Almusaiteer KA, Chuang SSC, Tan C-D (2000) J Catal 189:247Google Scholar
  75. 75.
    Almusaiteer K, Chuang SSC (1998) J Catal 180:161Google Scholar
  76. 76.
    Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Science (Washington, DC) 273:1688Google Scholar
  77. 77.
    Gates BC (1992) Catalytic chemistry. John Wiley and Sons, Inc., New York, p 458Google Scholar
  78. 78.
    Hecker WC, Bell AT (1984) J Catal 85:389Google Scholar
  79. 79.
    Rasko J, Solymosi F (1981) J Catal 71:219Google Scholar
  80. 80.
    Solymosi F, Bansagi T (1979) J Phys Chem 83:552Google Scholar
  81. 81.
    Unland ML (1973) J Phys Chem 77:1952Google Scholar
  82. 82.
    Unland ML (1973) J Catal 31:459Google Scholar
  83. 83.
    Chuang SSC, Stevens RW Jr, Khatri R (2005) Top Catal 32:225CrossRefGoogle Scholar
  84. 84.
    Chuang SSC (1990) Appl Catal 66:L1Google Scholar
  85. 85.
    Chuang SSC, Pien SI, Narayanan R (1990) Appl Catal 57:241Google Scholar
  86. 86.
    Chuang SSC, Pien SI, Sze C (1990) J Catal 126:187Google Scholar
  87. 87.
    Chuang SSC, Pien SI (1992) J Catal 138:536Google Scholar
  88. 88.
    Chuang SSC, Pien SI (1991) J Catal 128:569Google Scholar
  89. 89.
    Balakos MW, Chuang SSC (1995) J Catal 151:266Google Scholar
  90. 90.
    Balakos MW, Chuang SSC, Srinivas G (1993) J Catal 140:281Google Scholar
  91. 91.
    Chuang SSC, Brundage MA, Balakos MW, Srinivas G (1995) Appl Spectrosc 49:1151Google Scholar
  92. 92.
    Brundage MA, Balakos MW, Chuang SSC (1998) J Catal 173:122Google Scholar
  93. 93.
    Maira AJ, Coronado JM, Augugliaro V, Yeung KL, Conesa JC, Soria J (2001) J Catal 202:413Google Scholar
  94. 94.
    Liao L-F, Wu W-C, Chen C-Y, Lin J-L (2001) J Phys Chem B 105:7678Google Scholar
  95. 95.
    Coronado JM, Kataoka S, Tejedor-Tejedor I, Anderson MA (2003) J Catal 219:219Google Scholar
  96. 96.
    Cao S, Yeung KL, Yue P-L (2007) Appl Catal B 76:64Google Scholar
  97. 97.
    Yeung KL, Yau ST, Maira AJ, Coronado JM, Soria J, Yue PL (2003) J Catal 219:107Google Scholar
  98. 98.
    Ollis DF (1998) Cattech 2:149Google Scholar
  99. 99.
    Yu Z, Chuang SSC (2008) Appl Catal B 83:277Google Scholar
  100. 100.
    Wu JCS, Wu T-H, Chu T, Huang H, Tsai D (2008) Top Catal 47:131Google Scholar
  101. 101.
    Blount MC, Buchholz JA, Falconer JL (2001) J Catal 197:303Google Scholar
  102. 102.
    Panayotov DA, Yates JT Jr (2005) Chem Phys Lett 410:11Google Scholar
  103. 103.
    Szczepankiewicz SH, Colussi AJ, Hoffmann MR (2000) J Phys Chem B 104:9842Google Scholar
  104. 104.
    Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) J Phys Chem B 106:2922Google Scholar
  105. 105.
    Berger T, Sterrer M, Diwald O, Knoezinger E, Panayotov D, Thompson TL, Yates JT Jr (2005) J Phys Chem B 109:6061Google Scholar
  106. 106.
    Yu Z, Chuang SSC (2007) J Phys Chem C 111:13813Google Scholar
  107. 107.
    Yu Z, Chuang SSC (2007) J Catal 246:118Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringThe University of AkronAkronUSA

Personalised recommendations