Advertisement

Topics in Catalysis

, Volume 52, Issue 12, pp 1660–1668 | Cite as

The Oxidative Dehydrogenation of Propane Using Vanadium Oxide Supported on Nanocrystalline Ceria

  • Marie N. Taylor
  • Albert F. Carley
  • Thomas E. Davies
  • Stuart H. TaylorEmail author
Original paper

Abstract

Nanocrystalline ceria was prepared as a support for vanadium oxide catalysts and tested for the oxidative dehydrogenation of propane. Nanocrystalline ceria is very active for the total oxidation of propane under conditions used for oxidative dehydrogenation. The addition of vanadium results in a switch of activity to produce propene with appreciable selectivity. The catalyst performance depends on the vanadium loading. Lower vanadium loadings resulted in catalysts with highly dispersed vanadia species, which were selective towards propene production. Higher vanadium loadings resulted in the formation of a mixed cerium–vanadium phase, which was also active for propane selective oxidation. A catalyst with an intermediate loading was far less selective. Catalysts were characterised by a range of techniques (including XRD, laser Raman, TPR, SEM/EDX and XPS), and the activity of the catalysts can be related to their structure and chemistry.

Keywords

Ceria vanadium oxide Propane Propene Selective oxidation Oxidative dehydrogenation 

Notes

Acknowledgments

We would like to thank Cardiff University, School of Chemistry and EPSRC for funding.

References

  1. 1.
    Frank B, Dinse A, Ovsitser O, Kondratenko EV, Schomacker R (2007) Appl Catal A 323:66CrossRefGoogle Scholar
  2. 2.
    Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113CrossRefGoogle Scholar
  3. 3.
    Al-Zahrani SM, Jibril BY, Abasaeed AE (2003) Catal Today 81:507CrossRefGoogle Scholar
  4. 4.
    Meunier FC, Yasmeen A, Ross JRH (1997) Catal Today 37:33CrossRefGoogle Scholar
  5. 5.
    Yoon Y-S, Fujikawa N, Ueda W, Moro-oka Y, Lee K-W (1995) Catal Today 24:327CrossRefGoogle Scholar
  6. 6.
    Chen K, Xie S, Bell AT, Iglesia E (2001) J Catal 198:232CrossRefGoogle Scholar
  7. 7.
    Davies T, Taylor SH (2004) Catal Lett 93:151CrossRefGoogle Scholar
  8. 8.
    Zhau Z, Gao X, Wachs IE (2003) J Phys Chem B 107:6333CrossRefGoogle Scholar
  9. 9.
    Argyle MD, Chen K, Bell AT, Iglesia E (2002) J Catal 208:139CrossRefGoogle Scholar
  10. 10.
    Blasco T, López Nieto JM (1997) Appl Catal A 157:117CrossRefGoogle Scholar
  11. 11.
    Mamedov EA, Cortés Corberán V (1995) Appl Catal A 127:1CrossRefGoogle Scholar
  12. 12.
    Ueda W, Oshihara K (2000) Appl Catal A 200:135CrossRefGoogle Scholar
  13. 13.
    Liu Y-M, Feng W-L, Li T-C, He H-Y, Dai W-L, Huang W, Cao Y, Fan K-N (2006) J Catal 239:125CrossRefGoogle Scholar
  14. 14.
    Pena ML, Dejoz A, Fornes V, Rey F, Vazquez MI, Lopez Nieto JM (2001) Appl Catal A 209:155CrossRefGoogle Scholar
  15. 15.
    Pieck CL, Banares MA, Fierro JLG (2004) J Catal 224:1CrossRefGoogle Scholar
  16. 16.
    Christodoulakis A, Machli M, Lemonidou AA, Boghosian S (2004) J Catal 222:293CrossRefGoogle Scholar
  17. 17.
    Chaar M, Patel D, Kung H (1998) J Catal 109:463CrossRefGoogle Scholar
  18. 18.
    Michalakos PM, Kung MC, Jahan I, Kung HH (1993) J Catal 140:226CrossRefGoogle Scholar
  19. 19.
    Sam DSH, Soenen V, Volta JC (1990) J Catal 123:417CrossRefGoogle Scholar
  20. 20.
    Grzybowsk B, Słoczyński J, Grabowski R, Samson K, Gressel I, Wcisło K, Gengembre L, Barbaux Y (2002) Appl Catal A 230:1CrossRefGoogle Scholar
  21. 21.
    Lemonidou AA, Nalbandian L, Vasalos IA (2000) Catal Today 61:333CrossRefGoogle Scholar
  22. 22.
    Salazer M, Berry DA, Gardner TH, Shekhawat D, Floyd D (2006) Appl Catal A 310:54CrossRefGoogle Scholar
  23. 23.
    Garcia T, Solsona BE, Taylor SH (2006) Appl Catal B 66:92CrossRefGoogle Scholar
  24. 24.
    Ntainjua E, Garcia NT, Solsona B, Taylor SH (2008) Catal Today 137:373CrossRefGoogle Scholar
  25. 25.
    Ntainjua E, Garcia NT, Solsona B, Taylor SH (2007) Appl Catal B 76:248CrossRefGoogle Scholar
  26. 26.
    Martınez-Huerta MV, Coronado JM, Ferna’ndez-Garcı’a M, Iglesias-Juez A, Deo G, Fierro JLG, Banares MA (2004) J Catal 225:240CrossRefGoogle Scholar
  27. 27.
    Daniell W, Ponchel A, Kuba S, Anderle F, Weingand T, Gregory DH, Knozinger H (2002) Topics Catal 20:65CrossRefGoogle Scholar
  28. 28.
    Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178CrossRefGoogle Scholar
  29. 29.
    Wachs IE (1990) J Catal 124:570CrossRefGoogle Scholar
  30. 30.
    Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67CrossRefGoogle Scholar
  31. 31.
    Busca G, Marchetti L, Centi G, Trifiro F (1986) Langmuir 2:568CrossRefGoogle Scholar
  32. 32.
    Rodella CB, Franco RWA, Magon CJ, Donoso JP, Nunes LAO, Saeki MJ, Aegerter MA, Sargentelli V, Florentino AO (2002) J Sol Gel Sci Technol 83:25Google Scholar
  33. 33.
    Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205CrossRefGoogle Scholar
  34. 34.
    Chao KJ, Wu CN, Chang H, Lee LJ, Hu SF (1997) J Phys Chem B 101:6341CrossRefGoogle Scholar
  35. 35.
    Choi HJ, Moon J, Shim HB, Han KS, Lee EG, Jung KD (2006) J Am Ceram Soc 89:343CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marie N. Taylor
    • 1
  • Albert F. Carley
    • 1
  • Thomas E. Davies
    • 1
  • Stuart H. Taylor
    • 1
    Email author
  1. 1.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations