Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Supported Nano-Gold Catalysts for Epoxidation of Styrene and Oxidation of Benzyl Alcohol to Benzaldehyde

  • 1277 Accesses

  • 56 Citations

Abstract

Nano-gold particles supported on different alkaline earth oxides (viz. MgO, CaO, BaO and SrO), Gr. IIIa metal oxides (viz. Al2O3, Ga2O3, In2O3 and Tl2O3), transition metal oxides (viz. TiO2, Cr2O3, MnO2, Fe2O3, CoOx, NiO, CuO, ZnO, Y2O3 and ZrO2), rare earth metal oxides (viz. La2O3, Ce2O3, Nd2O3, Sm2O3, Eu2O3, Tb2O3, Er2O3 and Yb2O3) and U3O8 [all prepared by depositing gold on corresponding metal oxide support by deposition precipitation (DP) and/or homogeneous deposition precipitation (HDP) method] were evaluated for their catalytic performance in the liquid phase epoxidation of styrene by tert-butyl hydroperoxide (TBHP) to styrene oxide and also in the solvent-free benzyl alcohol-to-benzaldehyde oxidation (by molecular oxygen or TBHP) reactions. For the epoxidation, the catalytic performance (styrene oxide yield) of the most promising nano-gold catalysts prepared by the HDP method was in the following order: Au/MgO > Au/Tl2O3 > Au/Yb2O3 > Au/Tb2O3 > Au/CaO (or TiO2). However, for the oxidation of benzyl alcohol to benzaldehyde by molecular oxygen, the order of choice for the most promising catalysts (based on benzaldehyde yield) was Au/U3O8 > Au/Al2O3 > Au/ZrO2 > Au/MgO. Whereas, when TBHP was used as an oxidizing agent for the benzyl alcohol oxidation, the order of choice for the most promising catalysts was Au/U3O8 > Au/MgO > Au/TiO2 > Au/ZrO2 > Au/Al2O3. The catalytic performance of a particular supported nano-gold catalyst was thus found to depend on the reaction catalysed by them. Moreover, it is strongly influenced by a number of catalyst parameters, such as the metal oxide support, the method of gold depositon on the support, the gold loading and also on the catalyst calcination temperature. Nano-gold particles-support interactions seem to play an important role in controlling the deposition of gold (amount of gold deposited and size and morphology of gold particles), formation of different surface gold species (Au0, Au1+ and Au3+) and electronic properties of gold particles and, consequently, control the catalytic performance (both the activity and selectivity) of the supported nano-gold catalysts in the reactions. The nano-gold catalysts prepared by the HDP method showed much better catalytic performance than those prepared by the DP, coprecipitation or impregnation method; in general, the HDP method provided supported gold catalysts with much higher gold loading and/or smaller size gold particles than that achieved by the DP and other methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Swern D (1971) In: Swern D (ed) Organic peroxide, vol 2. Wiley Interscience, New York

  2. 2.

    Grieken VR, Sotelo JL, Martos C, Fierro JLG, Lopez-Granados M, Mariscal R (2000) Catal Today 61:49

  3. 3.

    Yang Q, Wang S, Lu J, Xiong G, Feng Z, Xin X, Li C (2000) Appl Catal A 194–195:507

  4. 4.

    Yang Q, Li C, Wang JL, Ying P, Xin X, Shi W (2000) Stud Surf Sci Catal 130:221

  5. 5.

    Kumar SB, Mirajkar SP, Pais GCG, Kumar P, Kumar R (1995) J Catal 156:163

  6. 6.

    Laha SC, Kumar R (2001) J Catal 204:64

  7. 7.

    Zhang W, Froba M, Wang J, Tanev P, Wong J, Pinnavaia TJ (1996) J Am Chem Soc 118:9164

  8. 8.

    Fu J, Yin D, LI Q, Zhang L, Zhang Y (1999) Microporous Mesoporous Mater 29:351

  9. 9.

    Choudhary VR, Patil NS, Bhargava SK (2003) Catal Lett 89:55

  10. 10.

    Choudhary VR, Patil NS, Choudhary NK, Bhargava SK (2005) J Mol Catal A 227:217

  11. 11.

    Choudhary VR, Patil NS, Choudhary NK, Bhargava SK (2004) Catal Commun 5:205

  12. 12.

    Choudhary VR, Zha R, Jana P (2006) Green Chem 8:689

  13. 13.

    Choudhary VR, Zha R, Choudhary NK, Jana P (2007) Catal Commun 8:1556

  14. 14.

    Choudhary VR, Zha R, Jana P (2008) Catal Commun 10:205

  15. 15.

    Tsuruya S, Okamoto Y, Kuwada T (1979) J Catal 56:52

  16. 16.

    Tsuruya S, Miyamoto H, Sakae T, Masai M (1980) J Catal 64:260

  17. 17.

    Kulkarni SJ, Ramachandra Rao R, Subramanyam M, Rama Rao AV, Sarkany A, Guczi L (1996) Appl Catal A 139:59

  18. 18.

    Arai M, Nishiyama S, Tsuruya S, Masai M (1996) J Chem Soc Faraday Trans 92:2631

  19. 19.

    Hayashibara H, Nishiyama S, Tsuruya S, Masai M (1995) J Catal 153:254

  20. 20.

    Sueto S, Nishiyama S, Tsuruya S, Masai M (1997) J Chem Soc Faraday Trans. 93:659

  21. 21.

    Sumathi R, Johnson K, Vishwanathan B, Varadarajan TK (1998) Appl Catal A 172:15

  22. 22.

    Idaka N, Nishiyama S, Tsuruya S (2001) Phys Chem Chem Phys 3:1918

  23. 23.

    Bijlani NS, Chandalia SB (1981) Indian Chem Eng 23:44

  24. 24.

    Liotta LF, Venezia AM, Deganello G, Longo A, Martorana A, Schay Z, Guczi L (2001) Catal Today 66:271

  25. 25.

    Yadav GD, Mistry CK (2001) J Mol Catal A 172:135

  26. 26.

    Choudary BM, Kantam ML, Rahman A, Reddy CV, Rao KK (2001) Angew Chem Int Ed Engl 40:763

  27. 27.

    Choudhary VR, Dumbre DK, Narkhede VS, Jana SK (2003) Catal Lett 86:229

  28. 28.

    Choudhary VR, Dumbre DK, Uphade BS, Narkhede VS (2004) J Mol Catal A 215:129

  29. 29.

    Choudhary VR, Chaudhary PA, Narkhede VS (2003) Catal Commun 4:171

  30. 30.

    Haruta M, yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301

  31. 31.

    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:102

  32. 32.

    Haruta M (2002) Caltech 6:102

  33. 33.

    The abilities and potential of gold as a catalyst: report of the Osaka National Research Institute (April 1994–March 1999) No. 393, August 1999

  34. 34.

    Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319

  35. 35.

    Choudhary TV, Goodman DW (2002) Top Catal 21:25

  36. 36.

    Choudhary VR, Jana P (2007) Catal Commun 8:811

  37. 37.

    Choudhary VR, Patil VP, Jana P, Uphade BS (2008) Appl Catal A 350:186

  38. 38.

    Hayashi T, Tanaka K, Haruta M (1998) J Catal 178:566

  39. 39.

    Nijuis TA, Huizinga BJ, Makkee M, Moulijin JA (1999) Ind Eng Chem Res 38:884

  40. 40.

    Uphade BS, Akita T, Nakamura T, Haruta M (2002) J Catal 209:331

  41. 41.

    Uphade BS, Okumura M, Tsubota S, Haruta M (2000) Appl Catal A 190:43

  42. 42.

    Rudolph J, Reddy KJ, Chiang JP, Sharpless KB (1997) J Am Chem Soc 119:6189

  43. 43.

    Milone C, Ingoglia R, Pistone A, Neri G, Galvagno S (2003) Catal Lett 87:201

  44. 44.

    S. Biella, M. Rossi (2003) Chem Commun 378

  45. 45.

    Patil NS, Uphade BS, Jana P, Bhargava SK, Choudhary VR (2004) J Catal 223:236

  46. 46.

    Patil NS, Uphade BS, Jana P, Sonawane RS, Bhargava SK, Choudhary VR (2004) Catal Lett 94:89

  47. 47.

    Patil NS, Uphade BS, Mculloh DG, Bhargava SK, Choudhary VR (2004) Catal Commun 5:681

  48. 48.

    Patil NS, Zha R, Uphade BS, Bhargava SK, Choudhary VR (2004) Appl Catal A 275:87

  49. 49.

    Patil NS, Uphade BS, Jana P, Bhargava SK, Choudhary VR (2004) Chem Lett 33:400

  50. 50.

    Choudhary VR, Patil NS, Uphade BS, Jana P, US Patent 6,933,397 (2005)

  51. 51.

    Choudhary VR, Dhar A, Jana P, Zha R, Uphade BS (2005) Green Chem 7:768

  52. 52.

    Choudhary VR, Zha R, Jana P (2007) Green Chem 9:267

  53. 53.

    Dumbre DK (2008) Selective liquid phase alcohol oxidation and heck-type coupling reactions using heterogeneous catalysts. Ph. D. Thesis, University of Pune, Pune, India, October 2008

  54. 54.

    Buffat Ph, Borel JP (1976) Phys Rev A 13:2287

  55. 55.

    Tsubota S, Cunningham DAH, Bando Y, Haruta M (1995) Stud Surf Sci Catal 91:227

  56. 56.

    Haruta M (1997) Catal Today 36:153

  57. 57.

    Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106:7634

  58. 58.

    Willard HH, Tang NK (1937) Ind Eng Chem Anal Ed 9:357

  59. 59.

    Tanabe K, Itoh M, Morishige K (1969) In: Delmon IB, Jacobs PA, Poncelet C (eds) Preparation of catalysts. Elsevier, Amsterdam, p 65

  60. 60.

    Valden M, Lai X, Goodman DW (1998) Science 281:1647

  61. 61.

    Okumura M, Nakamura SI, Tsubota S, Okumura T, Haruta M (1998) Stud Surf Sci Catal 118:277

  62. 62.

    Valden M, Pak S, Lai X, Goodman DW (1998) Catal Lett 56:7

  63. 63.

    Kozlov A, Kozlova AP, Liu H, Iwasawa Y (1999) Appl Catal A 182:9

  64. 64.

    Yuan Y, Kozlova AP, Akasura K, Wan H, Tsai K, Iwasawa Y (1997) J Catal 170:143

  65. 65.

    Choudhary VR, Jana P, Bhargava SK, Int J Nanoparticles (in press)

  66. 66.

    Patil NS (2004) Liquid phase epoxidation of olefinic compounds by using solid heterogeneous catalysis. Ph.D. Thesis, RMIT University, Melbourne, March 2004

  67. 67.

    Choudhary VR, Dumbre DK, Bhargava SK, I&EC Res (to be published)

  68. 68.

    Fu Q, Salsbarg H, Flytzami-Stephano-poulos M (2003) Science 301:935

  69. 69.

    Chen MS, Goodman DW (2007) Top Catal 44:41

  70. 70.

    Rodriguez JA, Wang X, Liu P, Wen W, Hanson JC, Hrbele J, Perg M, Evans J (2007) Top Catal 44:93

  71. 71.

    Enache DI, Edwards JK, London P, Sulsana-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362

Download references

Acknowledgement

VRC is grateful to the National Academy of Sciences, India for the NASI Senior Scientist position.

Author information

Correspondence to Vasant R. Choudhary.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choudhary, V.R., Dumbre, D.K. Supported Nano-Gold Catalysts for Epoxidation of Styrene and Oxidation of Benzyl Alcohol to Benzaldehyde. Top Catal 52, 1677–1687 (2009). https://doi.org/10.1007/s11244-009-9306-1

Download citation

Keywords

  • Epoxidation
  • Styrene
  • Styrene oxide
  • Oxidation
  • Benzyl alcohol
  • Benzaldehyde
  • Nano-gold catalysts
  • Metal oxide supports