Topics in Catalysis

, Volume 52, Issue 12, pp 1630–1639 | Cite as

A General Strategy for the Design of New Solid Catalysts for Environmentally Benign Conversions

Solid Catalysts for Benign Conversions
  • John Meurig Thomas
  • Juan Carlos Hernandez-Garrido
  • Robert G. Bell
Original Paper


After first outlining in qualitative terms progress made in predicting and modelling solids in general, a brief account is given of the substantial progress made in enumerating hypothetical open structures based on 4-coordinantion, some of which will possibly play a role in the catalytic conversion of carbohydrates that figure eminently in renewable feedstocks. Specifically, in outlining trends in processing renewable organic species, attention is paid to (i) converting starch into potentially important new fuels; (ii) the catalytic dehydration of bio-ethanol to yield ethylene; and (iii) catalytically assisted modifications that can be made to bio-glycerol, especially via oxidation. Finally, progress made in a general strategy for the design of new catalysts is outlined, and a tabulation given of a dozen or so examples that have high commercial significance.


Design of catalysts Renewable feedstocks Structure prediction Solid acid catalysts Ethanol to ethylene Biodiesel Bioglycerol Open structures Starch 



We thank Dr R. Raja for his help in compiling Table 1. J.C. H.G. thanks the European Union for financial support under the Framework 6 program for an Integrated Infrastructure Initiative (Ref.:026019 ESTEEM).


  1. 1.
    Whitesides GM, Crabtree GW (2007) Science 315:796CrossRefGoogle Scholar
  2. 2.
    Thomas JM, Raja R (2006) Top Catal 40:3CrossRefGoogle Scholar
  3. 3.
    Thomas JM (2008) J Chem Phys 120:182502CrossRefGoogle Scholar
  4. 4.
    Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Edit 44:6456CrossRefGoogle Scholar
  5. 5.
    Schloegl R (1994) Angew Chem Int Ed 33:311CrossRefGoogle Scholar
  6. 6.
    Thomas JM, Zamaraev KI (1994) Angew Chem Int Edit 33:308CrossRefGoogle Scholar
  7. 7.
    Notari B (1994) Adv Catalysis 41:253CrossRefGoogle Scholar
  8. 8.
    Ballantine JA, Purnell JH, Thomas JM (1984) Molec Catal 27:157CrossRefGoogle Scholar
  9. 9.
    Ballantine JA, Purnell JH, Thomas JM (1985) US Patent 4, 999, 319Google Scholar
  10. 10.
    Thomas JM, Zamaraev KI (1992) Perspectives in Catalysis. Blackwell-IUPAC, North CarolinaGoogle Scholar
  11. 11.
    Woodley SM, Catlow R (2008) Nature Materials 7:937CrossRefGoogle Scholar
  12. 12.
    Catlow CRA, Thomas JM, Parker SC, Jefferson DA (1982) Nature 295:658CrossRefGoogle Scholar
  13. 13.
    Parker SC (1983) Solid State Ionics 8:179CrossRefGoogle Scholar
  14. 14.
    Catlow CRA, Thomas JM, Freeman CM, Wright PA, Bell RG (1993) Proc R Soc Lond A 442:85CrossRefGoogle Scholar
  15. 15.
    Thomas JM (1999) Angew Chem Int Edit 38:3588CrossRefGoogle Scholar
  16. 16.
    Thomas JM, Klinowski J (2007) Angew Chem Int Edit 46:7160CrossRefGoogle Scholar
  17. 17.
    Majda D, Paz FAA, Friedrichs D, Foster MD, Simperler A, Bell RG, Klinowski J (2008) J Phys Chem C 112:1040CrossRefGoogle Scholar
  18. 18.
    Kirkpatrick S, Gelatt JCD, Vecchi MP (1983) Science 220:671CrossRefGoogle Scholar
  19. 19.
    Harris KDM, Habershorn S, Cheung EY, Johnson RL (2004) Z Krystallogra 219:838CrossRefGoogle Scholar
  20. 20.
    Treacy MMJ, Randall KH, Rao S, Perry JA, Chadi DJ (1997) Z Krystallogr 212:768CrossRefGoogle Scholar
  21. 21.
    Foster MD, Simperler A, Bell RG, Delgado Friedrichs O, Almeida Paz FA, Klinowski J (2004) Nature Materials 3:234CrossRefGoogle Scholar
  22. 22.
    Hofmann DWM, Apostolakis J (2003) J Molec Struc 647:17CrossRefGoogle Scholar
  23. 23.
    Price SL (2008) Phys Chem Chem Phys 10:1996CrossRefGoogle Scholar
  24. 24.
    Jansen M (2008) Turning Points in Solid-State, Materials Science and Surface Chemistry. RSC Publising, Cambridge, p 22Google Scholar
  25. 25.
    Čančarević ŽP, Schön JC, Jansen M (2008) Chem Asian J 3:561CrossRefGoogle Scholar
  26. 26.
    Smith K, Zhenhua Z, Hodgson PKG (1998) J Mol Catal A: Chemical 134:121CrossRefGoogle Scholar
  27. 27.
    Smith K, Almeer S, Black SJ (2000) Chem Commun 17:1571CrossRefGoogle Scholar
  28. 28.
    Thomas JM, Hernandez-Garrido JC, Raja R, Bell RG (2009) Phys Chem Chem Phys (in press)Google Scholar
  29. 29.
    Arnold FH (1998) Acc Chem Res 31:125CrossRefGoogle Scholar
  30. 30.
    Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238CrossRefGoogle Scholar
  31. 31.
    Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Nature 447:982CrossRefGoogle Scholar
  32. 32.
    Thomas JM, Raja R, Johnson BFG, O’Connell TJ, Sankar G, Khimyak T (2003) Chem Commun 10:1126CrossRefGoogle Scholar
  33. 33.
    Editor’s Choice (2003) Science 300:867Google Scholar
  34. 34.
    Svelle S, Olsbye U, Joensen F, Bjørgen M (2007) J Phys Chem C 111:17981CrossRefGoogle Scholar
  35. 35.
    Xu Y, Grey CP, Thomas JM, Cheetham AK (1990) Cat Lett 4:251CrossRefGoogle Scholar
  36. 36.
    Raja R, Potter ME, Paterson AJ, Lefenfeld M, Thomas JM (2009) (submitted)Google Scholar
  37. 37.
    Zhou C-H, Beltramini JN, Fana Y-X, Lu GQ (2008) Chem Soc Rev 37:527CrossRefGoogle Scholar
  38. 38.
    Glycerol (2001) Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons Inc, New YorkGoogle Scholar
  39. 39.
    Wang ZZJ, Zhuge J, Fang H, Prior BA (2001) Biotechnol Adv 19:201CrossRefGoogle Scholar
  40. 40.
    Chowdury J, Fouky K (1993) Chem Eng 100:35Google Scholar
  41. 41.
    Karaosmanoglu F, Cigizoglu KB, Tuter M, Ertekin S (1996) Energy Fuels 10:890CrossRefGoogle Scholar
  42. 42.
    Meher LC, Vidya Sagar D, Naik SN (2006) Renewable Sustainable Energy Rev 10:248CrossRefGoogle Scholar
  43. 43.
    McCoy M (2006) Chem Eng News 84:7Google Scholar
  44. 44.
    Wilson EK (2002) Chem Eng News 80:46Google Scholar
  45. 45.
    Bagley ST, Gratz LD, Johnson JH, McDonald JF (1998) Environ Sci Technol 32:1183CrossRefGoogle Scholar
  46. 46.
    Frondel M, Peters J (2007) Energy Policy 35:1675CrossRefGoogle Scholar
  47. 47.
    Gong CS, Du JX, Cao NJ, Tsao GT (2000) Appl Biochem Biotechnol 84:543CrossRefGoogle Scholar
  48. 48.
    Rogers PL, Jeon YJ, Svenson CJ (2005) Process Saf Environ Prot 83:499CrossRefGoogle Scholar
  49. 49.
    Wyman CE (2003) Biotechnol Prog 19:254CrossRefGoogle Scholar
  50. 50.
    Landucci R, Goodman BJ, Wyman CE (1994) Appl Biochem Biotechnol 45–46:677CrossRefGoogle Scholar
  51. 51.
    Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C (2005) Environ Chem Lett 3:136CrossRefGoogle Scholar
  52. 52.
    Chiu CW, Goff MJ, Suppes GJ (2005) AIChE J 51:1274CrossRefGoogle Scholar
  53. 53.
    Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA (2005) Catal Today 106:190CrossRefGoogle Scholar
  54. 54.
    Christensen CH, Raas-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) ChemSusChem 1:283CrossRefGoogle Scholar
  55. 55.
    Prati L, Spontoni P, Gaiassi A (2009) Top Catal (in press)Google Scholar
  56. 56.
    Thomas JM, Raja R (2006) Catal Today 117:22CrossRefGoogle Scholar
  57. 57.
    Raja R, Thomas JM, Xu M, Harris KDM, Greenhill-Hooper M, Quill K (2006) Chem Commun 4:448CrossRefGoogle Scholar
  58. 58.
    Dugal M, Sankar G, Raja R, Thomas JM (2000) Angew Chem Int Ed Engl 39:2310–2313CrossRefGoogle Scholar
  59. 59.
    Raja R, Sankar G, Thomas JM (2000) Angew Chem Int Ed Engl 39:2313–2316CrossRefGoogle Scholar
  60. 60.
    Raja R, Thomas JM, Chem Soc Chem J (1998) Commun 17:1841–1842Google Scholar
  61. 61.
    Thomas JM, Raja R, Sankar G, Bell RG (1999) Nature 398:227–230CrossRefGoogle Scholar
  62. 62.
    Raja R (2007) In: Harris KDM and Edwards P (eds) Turning points in solid-state, materials and surface science, RSC Publishing, London, pp 623–638Google Scholar
  63. 63.
    Raja R, Thomas JM, Dreyer V (2006) Catal Lett 110:179–183CrossRefGoogle Scholar
  64. 64.
    Thomas JM, Raja R (2005) Proc Natl Acad Sci 102:13732–13736CrossRefGoogle Scholar
  65. 65.
    Raja R, Thomas JM, Greenhill-Hooper M, Ley SV, Paz FAA (2008) Chem Eur J14:2340–2348CrossRefGoogle Scholar
  66. 66.
    Raja R, Thomas JM, Greenhill-Hooper M & Doukova V (2007) Chem Commun, 1924–1926Google Scholar
  67. 67.
    Raja R, Thomas JM, Xu M, Harris KDM, Greenhill-Hooper M & Quill (2006) Chem Commun, 448–450Google Scholar
  68. 68.
    Raja R, Thomas JM, Jones MD, Johnson BFG, Vaughan DEW (2003) J Am Chem Soc 125:14982–14983CrossRefGoogle Scholar
  69. 69.
    Jones MD, Raja R, Thomas JM, Rouzard J, Johnson BFG, Harris KDM (2003) Angew Chem Int Ed Engl 42:4326–4331CrossRefGoogle Scholar
  70. 70.
    Thomas JM, Raja R (2008) Acc Chem Res 41:708–720CrossRefGoogle Scholar
  71. 71.
    Adams RD, Blom DA, Captain B, Raja R, Thomas JM, Trufan E (2008) Langmuir 24:9223–9226CrossRefGoogle Scholar
  72. 72.
    Hungria AB, Raja R, Adams RD, Captain B, Thomas JM, Midgley PA, Golovko VB, Johnson BFG (2006) Angew Chem Int Ed Engl 45:4782–4785CrossRefGoogle Scholar
  73. 73.
    Chen J, Thomas JM (1994) Chem Commun 603Google Scholar
  74. 74.
    Thomas JM, Hernandez-Garrido JC, Raja R, Bell RG (2009) Phys Chem Chem Phys 11:2799–2825CrossRefGoogle Scholar
  75. 75.
    Raja R, Adams RD, Blom DA, Pearl WC, Gianotti E, Thomas JM (2009) Langmuir 25 (in press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John Meurig Thomas
    • 1
  • Juan Carlos Hernandez-Garrido
    • 1
  • Robert G. Bell
    • 2
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations