Advertisement

Topics in Catalysis

, Volume 52, Issue 11, pp 1482–1491 | Cite as

H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2

  • Priscilla Avenier
  • Xavier Solans-Monfort
  • Laurent Veyre
  • Filippo Renili
  • Jean-Marie Basset
  • Odile EisensteinEmail author
  • Mostafa Taoufik
  • Elsje Alessandra QuadrelliEmail author
Original Paper

Abstract

The silica-grafted Ta(V) imido amido complex [(≡SiO)2Ta(NH)(NH2)], 2, obtained from the reaction of either ammonia or dinitrogen plus hydrogen with the silica-grafted hydrides [(≡SiO)2Ta(III)H], 1a, and [(≡SiO)2Ta(V)H3], 1b, undergoes H/D exchange with D2. In situ IR spectroscopy shows that the fully labelled compound [(≡SiO)2Ta(ND)(ND2)], 2-d, can be obtained by moderate heating (60 °C, 3 h) under D2 atmosphere (550 torr, 300 eq. with respect to Ta), and that the exchange is reversible. The observed stretching and bending frequencies of 2-d are in agreement with the expected isotopic shift upon H/D replacement with respect to literature values reported for 2 and have been corroborated by the independent synthesis of 2-d by reaction of deuterated 1a and 1b with N2 and D2. Density functional theory (DFT) calculations, performed using a periodic or a cluster model, explored the structures and energetics of all minima involved in the reaction with H2 and showed that among the explored pathways the energetically preferred mechanisms for H2 reaction with [{(μ-O)[(HO)2SiO]2}Ta(V)(NH)(NH2)], 2q, is the heterolytic cleavage of either the imido Ta=N or the amido Ta-N bonds, to yield respectively [{(μ-O)[(HO)2SiO]2}TaH(NH2)2], 3q (ΔE = −9.5 kcal mol−1 and ΔG298K = +2.6 kcal mol−1 with respect to 2q) and [{(μ-O)[(HO)2SiO]2}Ta(NH)(NH3)], 4q (ΔE = −6.0 kcal mol−1 and ΔG298K = +7.9 kcal mol−1 with respect to 2q). All activation barriers are moderate (between 17.7 and 30.2 kcal mol−1) in agreement with the observed mild heating conditions necessary for the reaction to occur.

Keywords

Tantalum (V) Imido amido H/D exchange Dihydrogen Heterolytic splitting Ammonia Dinitrogen 

Notes

Acknowledgments

The European Network of Excellence IDECAT is gratefully acknowledged. EAQ thanks French Agence Nationale de la Recherche for a young researcher grant “N2Activation” (ANR-08-JCJC-0086-01). The BSC (Barcelona Supercomputing Center) and CESCA (Catalan Supercomputing Center) are acknowledged for generous donation of computational time.

References

  1. 1.
    Braun T (2005) Angew Chem, Int Ed 44:5012–5014CrossRefGoogle Scholar
  2. 2.
    Shilov AE (2003) Russ Chem Bull 52:2555–2562CrossRefGoogle Scholar
  3. 3.
    Zhao J, Goldman AS, Hartwig JF (2005) Science 307:1080–1082CrossRefGoogle Scholar
  4. 4.
    Fox DJ, Bergman RG (2004) Organometallics 23:1656–1670CrossRefGoogle Scholar
  5. 5.
    Chao YW, Wexler PA, Wigley DE (1990) Inorg Chem 29:4592–4594CrossRefGoogle Scholar
  6. 6.
    Schrock RR, Murdzek JS, Bazan GC, Robbins J, DiMare M, O’Regan M (1990) J Am Chem Soc 112:3875–3886CrossRefGoogle Scholar
  7. 7.
    Yandulov DV, Schrock RR (2003) Science 301:76–78CrossRefGoogle Scholar
  8. 8.
    Conner D, Jayaprakash KN, Cundari TR, Gunnoe TB (2004) Organometallics 23:2724–2733CrossRefGoogle Scholar
  9. 9.
    Soignier S, Taoufik M, Le Roux E, Saggio G, Dablemont C, Baudouin A, Lefebvre F, De Mallmann A, Thivolle-Cazat J, Basset J-M, Sunley G, Maunders BM (2006) Organometallics 25:1569–1577CrossRefGoogle Scholar
  10. 10.
    Vidal V, Théolier A, Thivolle-Cazat J, Basset J-M, Corker J (1996) J Am Chem Soc 118:4595–4602CrossRefGoogle Scholar
  11. 11.
    Vidal V, Théolier A, Thivolle-Cazat J, Basset J-M (1997) Science 276:99–102CrossRefGoogle Scholar
  12. 12.
    Basset JM, Copéret C, Lefort L, Maunders BM, Maury O, Le Roux E, Saggio G, Soignier S, Soulivong D, Sunley GJ, Taoufik M, Thivolle-Cazat J (2005) J Am Chem Soc 127:8604–8605CrossRefGoogle Scholar
  13. 13.
    Taoufik M, Schwab E, Schultz M, Vanoppen D, Walter M, Thivolle-Cazat J, Basset J-M (2004) Chem Commun 1434–1435Google Scholar
  14. 14.
    Soulivong D, Copéret C, Thivolle-Cazat J, Basset J-M, Maunders BM, Pardy RBA, Sunley GJ (2004) Angew Chem, Int Ed 43:5366–5369CrossRefGoogle Scholar
  15. 15.
    Avenier P, Lesage A, Taoufik M, Baudouin A, De Mallmann A, Fiddy S, Vautier M, Veyre L, Basset J-M, Emsley L, Quadrelli EA (2007) J Am Chem Soc 129:176–186CrossRefGoogle Scholar
  16. 16.
    Avenier P, Taoufik M, Lesage A, Solans-Monfort X, Baudouin A, de Mallmann A, Veyre L, Basset JM, Eisenstein O, Emsley L, Quadrelli EA (2007) Science 317:1056–1060CrossRefGoogle Scholar
  17. 17.
    Albeniz AC, Heinekey DM, Crabtree RH (1991) Inorg Chem 30:3632–3635CrossRefGoogle Scholar
  18. 18.
    Zaera F (1995) Chem Rev 95:2651–2693CrossRefGoogle Scholar
  19. 19.
    Perthuisot C, Fan M, Jones WD (1992) Organometallics 11:3622–3629CrossRefGoogle Scholar
  20. 20.
    Jacobsen EN, Goldberg KI, Bergman RG (1988) J Am Chem Soc 110:3706–3707CrossRefGoogle Scholar
  21. 21.
    Casty GL, Matturro MG, Myers GR, Reynolds RP, Hall RB (2001) Organometallics 20:2246–2249CrossRefGoogle Scholar
  22. 22.
    Lefort L, Copéret C, Taoufik M, Thivolle-Cazat J, Basset J-M (2000) Chem Commun 663–664Google Scholar
  23. 23.
    Yu SY, Biscardi JA, Iglesia E (2002) J Phys Chem B 106:9642–9648CrossRefGoogle Scholar
  24. 24.
    Joshi AM, Delgass WN, Thomson KT (2007) Top Catal 44:27–39CrossRefGoogle Scholar
  25. 25.
    Polyakov M, Poisot M, Bensch W, Muhler M, Grünert W (2008) J Catal 256:137–144CrossRefGoogle Scholar
  26. 26.
    Maishal TK, Alauzun J, Basset J-M, Copéret C, Corriu RJP, Jeanneau E, Mehdi A, Reye C, Veyre L, Thieuleux C (2008) AngewChem, Int Ed 47:8654–8656CrossRefGoogle Scholar
  27. 27.
    Zhou J, Hartwig JF (2008) Angew Chem, Int Ed 47:5783–5787CrossRefGoogle Scholar
  28. 28.
    Hothi P, Roujeinikova A, Khadra KA, Lee M, Cullis P, Leys D, Scrutton NS (2007) Biochemistry 46:9250–9259CrossRefGoogle Scholar
  29. 29.
    Zhao X, Chiang C-Y, Miller ML, Rampersad MV, Darensbourg MY (2003) J Am Chem Soc 125:518–524CrossRefGoogle Scholar
  30. 30.
    Vignais PM (2005) Coord Chem Rev 249:1677–1690CrossRefGoogle Scholar
  31. 31.
    Maier CS, Deinzer ML (2005) Methods Enzymol 402:312–360CrossRefGoogle Scholar
  32. 32.
    Loaiza A, Zaera F (2004) J Am Soc Mass Spectrom 15:1366–1373CrossRefGoogle Scholar
  33. 33.
    Liu David Q, Wu L, Sun M, MacGregor Paul A (2007) J Pharm Biomed Anal 44:320–329CrossRefGoogle Scholar
  34. 34.
    Atzrodt J, Derdau V, Fey T, Zimmermann J (2007) Angew Chem, Int Ed 46:7744–7765CrossRefGoogle Scholar
  35. 35.
    Khulbe KC, Mann RS, Manoogian A (1980) Chem Rev 80:417–428CrossRefGoogle Scholar
  36. 36.
    Toomey HE, Pun D, Veiros LF, Chirik PJ (2008) Organometallics 27:872–879CrossRefGoogle Scholar
  37. 37.
    Casey CP, Johnson JB (2005) J Am Chem Soc 127:1883–1894CrossRefGoogle Scholar
  38. 38.
    Bernskoetter WH, Lobkovsky E, Chirik PJ (2005) J Am Chem Soc 127:14051–14061CrossRefGoogle Scholar
  39. 39.
    Nanba T, Meunier FC, Hardacre C, Breen JP, Burch R, Masukawa S, Uchisawa J, Obuchi A (2008) J Phys Chem 112:18157–18163Google Scholar
  40. 40.
    Sellmann D, Sutter JZ (2003) Anorg Allerg Chem 629:893–901CrossRefGoogle Scholar
  41. 41.
    Balcells D, Nova A, Clot E, Gnanamgari D, Crabtree RH, Eisenstein O (2008) Organometallics 27:2529–2535CrossRefGoogle Scholar
  42. 42.
    Samec JSM, Éll AH, Åberg JB, Privalov T, Eriksson L, Bäckvall J-E (2006) J Am Chem soc 128:14293–14305CrossRefGoogle Scholar
  43. 43.
    Éll AH, Samec JSM, Brasse C, Bäckvall J-E (2002) Chem Commun 1144–1145Google Scholar
  44. 44.
    Schrock RR, Fellmann JD (1978) J Am Chem Soc 100:3359–3370CrossRefGoogle Scholar
  45. 45.
    Chen CY, Li HX, Davis ME (1993) Microporous Mater 2:17–26CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, TV, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Rev. B.04 ed. Gaussian Inc., Pittsburgh, PAGoogle Scholar
  47. 47.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  48. 48.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  49. 49.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  50. 50.
    Andrae D, Häuβermann U, Dolg M, Stoll H, Preuβ H (1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  51. 51.
    Bergner A, Dolg M, Küchle W, Stoll H, Preuβ H (1993) Mol Phys 80:1431–1441CrossRefGoogle Scholar
  52. 52.
    Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114CrossRefGoogle Scholar
  53. 53.
    Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking A (1993) Chem Phys Lett 208:237–240CrossRefGoogle Scholar
  54. 54.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  55. 55.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  56. 56.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  57. 57.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  58. 58.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  59. 59.
    Solans-Monfort X, Filhol J-S, Copéret C, Eisenstein O (2006) New J Chem 30:842–850CrossRefGoogle Scholar
  60. 60.
    Rhers B, Salameh A, Baudouin A, Quadrelli EA, Taoufik M, Copéret C, Lefebvre F, Basset J-M, Solans-Monfort X, Eisenstein O, Lukens WW, Lopez LPH, Sinha A, Schrock RR (2006) Organometallics 25:3554–3557CrossRefGoogle Scholar
  61. 61.
    Blanc F, Basset J-M, Copéret C, Sinha A, Tonzetich ZJ, Schrock RR, Solans-Monfort X, Clot E, Eisenstein O, Lesage A, Emsley L (2008) J Am Chem Soc 130:5886–5900CrossRefGoogle Scholar
  62. 62.
    Chabanas M, Quadrelli EA, Fenet B, Copéret C, Thivolle-Cazat J, Basset J-M, Lesage A, Emsley L (2001) Angew Chem, Int Ed 40:4493–4496CrossRefGoogle Scholar
  63. 63.
    Thieuleux C, Quadrelli EA, Basset J-M, Döbler J, Sauer J (2004) Chem Commun 1729–1731Google Scholar
  64. 64.
    Copéret C, Grouiller A, Basset J-M, Chermette H (2003) Chemphyschem 4:608–611CrossRefGoogle Scholar
  65. 65.
    Besedin DV, Ustynyuk LY, Ustynyuk YA, Lunin VV (2005) Top Catal 32:47–60CrossRefGoogle Scholar
  66. 66.
    Ustynyuk LY, Aleshkin IA, Suleimanov YV, Besedin DV, Ustynyuk YA, Lunin VV (2007) Russ J Phys Chem A 81:752–758CrossRefGoogle Scholar
  67. 67.
    Mikhailov MN, Bagatur yants AA, Kustov LM (2003) Russ Chem Bull 52:30–35CrossRefGoogle Scholar
  68. 68.
    Mikhailov MN, Kustov LM (2005) Russ Chem Bull 54:300–311CrossRefGoogle Scholar
  69. 69.
    Solans-Monfort X, Clot E, Copéret C, Eisenstein O (2005) Organometallics 24:1586–1597CrossRefGoogle Scholar
  70. 70.
    Poater A, Solans-Monfort X, Clot E, Copéret C, Eisenstein O (2006) Dalton Trans 3077–3087Google Scholar
  71. 71.
    Maron L, Perrin L, Eisenstein O. (2002) J Chem Soc, Dalton Trans 534–539Google Scholar
  72. 72.
    Caulton KG, Chisholm MH, Streib WE, Xue Z (1991) J Am Chem Soc 113:6082–6090CrossRefGoogle Scholar
  73. 73.
    Chen T, Wu Z, Li L, Sorasaenee KR, Diminnie JB, Pan H, Guzei IA, Rheingold AL, Xue Z (1998) J Am Chem Soc 120:13519–13520CrossRefGoogle Scholar
  74. 74.
    Morton LA, Zhang XH, Wang RT, Lin ZY, Wu YD, Xue ZL (2004) J Am Chem soc 126:10208–10209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Priscilla Avenier
    • 1
    • 2
  • Xavier Solans-Monfort
    • 3
  • Laurent Veyre
    • 1
  • Filippo Renili
    • 4
  • Jean-Marie Basset
    • 1
  • Odile Eisenstein
    • 5
    Email author
  • Mostafa Taoufik
    • 1
  • Elsje Alessandra Quadrelli
    • 1
    Email author
  1. 1.Université de Lyon, Institut de Chimie de Lyon, Equipe Chimie Organométallique de Surface, UMR 5265 C2P2 CNRS - ESCPE Lyon - ULyon1VilleurbanneFrance
  2. 2.IFP-Lyon, Rond-point de l’échangeur de SolaizeSolaizeFrance
  3. 3.Departament de QuímicaUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly
  5. 5.Institut Charles Gerhardt, Université Montpellier 2, UMR 5253 CNRS-UM2-ENSCM-UM1MontpellierFrance

Personalised recommendations