Topics in Catalysis

, Volume 52, Issue 11, pp 1566–1574

Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts

  • Elizabeth J. Biddinger
  • Dieter von Deak
  • Umit S. Ozkan
Original Paper

Abstract

Nitrogen-containing carbon nanostructure (CNx) catalysts developed by acetonitrile pyrolysis have been studied to better understand their role in the oxygen reduction reaction (ORR) in PEM and direct methanol fuel cell environments. Additional functionalization of the CNx catalysts with nitric acid has the ability to improve both the activity and selectivity towards ORR.

Keywords

CNx Nitrogen containing carbon Oxygen reduction reaction (ORR) PEM fuel cell cathode Carbon functionalization 

References

  1. 1.
    Latil S, Roche S, Mayou D, Charlier J-C (2004) Phys Rev Lett 92:256805CrossRefGoogle Scholar
  2. 2.
    Matter PH, Ozkan US (2006) Catal Lett 109:115CrossRefGoogle Scholar
  3. 3.
    Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2006) J Phys Chem B 110:18374CrossRefGoogle Scholar
  4. 4.
    Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) J Mol Catal 264:73CrossRefGoogle Scholar
  5. 5.
    Matter PH, Wang E, Ozkan US (2006) J Catal 243:395CrossRefGoogle Scholar
  6. 6.
    Matter PH, Zhang L, Ozkan US (2006) J Catal 239:83CrossRefGoogle Scholar
  7. 7.
    Matter PH, Wang E, Millet J-MM, Ozkan US (2007) J Phys Chem C 111:1444CrossRefGoogle Scholar
  8. 8.
    Biddinger EJ, Ozkan US (2007) Top Catal 46:339CrossRefGoogle Scholar
  9. 9.
    Jansinski R (1964) Nature 201:1212CrossRefGoogle Scholar
  10. 10.
    Jansinski R (1965) J Electrochem Soc 112:526CrossRefGoogle Scholar
  11. 11.
    Jahnke H, Schonborn M, Zimmerman G (1976) Fortschr Chem Forsch 61:133Google Scholar
  12. 12.
    van Veen JAR, van Baar JF, Kroese KJ (1981) Chem Soc Faraday Trans I 77:2827CrossRefGoogle Scholar
  13. 13.
    Kaisheva A, Gamburtsev S, Iliev I (1982) Sov J Electrochem 18:127Google Scholar
  14. 14.
    Gojkovic SL, Gupta S, Savinell RF (1998) J Electrochem Soc 145:3493CrossRefGoogle Scholar
  15. 15.
    Scherson DA, Gupta SL, Fierro C, Yeager EB, Kordesch ME, Eldridge J, Hoffman RW, Blue J (1983) Electrochim Acta 28:1205CrossRefGoogle Scholar
  16. 16.
    Martins Alves MC, Dodelet JP, Guay D, Ladouceur M, Tourillon G (1992) J Phys Chem 96:10898CrossRefGoogle Scholar
  17. 17.
    Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal B 79:89CrossRefGoogle Scholar
  18. 18.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  19. 19.
    Yeager E (1986) J Mol Catal 38:5CrossRefGoogle Scholar
  20. 20.
    Lefevre M, Dodelet JP, Bertrand P (2002) J Phys Chem B 106:8705CrossRefGoogle Scholar
  21. 21.
    Jaouen F, Lefevre M, Dodelet J-P, Cai M (2006) J Phys Chem B 110:5553CrossRefGoogle Scholar
  22. 22.
    Bouwkamp-Wijnoltz AL, Visscher W, van Veen JAR, Boellaard E, van der Kraan AM, Tang SC (2002) J Phys Chem B 106:12993CrossRefGoogle Scholar
  23. 23.
    Wiesener K (1986) Electrochim Acta 31:1073CrossRefGoogle Scholar
  24. 24.
    Gojkovic S, Gupta S, Savinell R (1999) J Electroanal Chem 462:63CrossRefGoogle Scholar
  25. 25.
    Gouerec P, Biloul A, Contamin O, Scarbeck G, Savy M, Riga J, Weng LT, Bertrand P (1997) J Electroanal Chem 422:61CrossRefGoogle Scholar
  26. 26.
    Maldonado S, Stevenson KJ (2004) J Phys Chem B 108:11375CrossRefGoogle Scholar
  27. 27.
    Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707CrossRefGoogle Scholar
  28. 28.
    Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) J Power Sources 183:34CrossRefGoogle Scholar
  29. 29.
    Wang P, Ma Z, Zhao Z, Jia L (2007) J Electroanal Chem 611:87CrossRefGoogle Scholar
  30. 30.
    Matter PH, Biddinger EJ, Ozkan US (2007) In: Spivey JJ (ed) Catalysis, vol 20. The Royal Society of Chemistry, Cambridge, UK, p 338Google Scholar
  31. 31.
    Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Carbon 33:1641CrossRefGoogle Scholar
  32. 32.
    van Dommele S, Romero-Izquirdo A, Brydson R, de Jong KP, Bitter JH (2008) Carbon 46:138CrossRefGoogle Scholar
  33. 33.
    Casanovas J, Ricart JM, Rubio J, Illas F, Jimenez-Mateos JM (1996) J Am Chem Soc 118:8071CrossRefGoogle Scholar
  34. 34.
    Jaouen F, Marcotte S, Dodelet J-P, Lindbergh G (2003) J Phys Chem B 107:1376CrossRefGoogle Scholar
  35. 35.
    Ros TG, van Dillen AJ, Geus JW, Koningsberger DC (2002) Chemistry 8:1151CrossRefGoogle Scholar
  36. 36.
    Subramanian NP, Kumaraguru SP, Colon-Mercado H, Kim H, Popov BN, Black T, Chen DA (2006) J Power Sources 157:56CrossRefGoogle Scholar
  37. 37.
    Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103:2042CrossRefGoogle Scholar
  38. 38.
    Nabae Y, Yamanaka I, Otsuka K (2005) Appl Catal A-Gen 280:149CrossRefGoogle Scholar
  39. 39.
    Gouerec P, Savy M, Riga J (1998) Electrochim Acta 43:743CrossRefGoogle Scholar
  40. 40.
    Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379CrossRefGoogle Scholar
  41. 41.
    Wu Z, Pittman CU Jr, Gardner SD (1995) Carbon 33:597CrossRefGoogle Scholar
  42. 42.
    Rasheed A, How JY, Dadmun MD, Britt PF (2007) Carbon 45:1072CrossRefGoogle Scholar
  43. 43.
    Xia W, Wang Y, Bergstraber R, Kundu S, Muhler M (2007) Appl Surf Sci 254:247CrossRefGoogle Scholar
  44. 44.
    Takoaka M, Yokokawa H, Takeda N (2007) Appl Catal B 74:179CrossRefGoogle Scholar
  45. 45.
    Frysz CA, Chung DDL (1997) Carbon 35:1111CrossRefGoogle Scholar
  46. 46.
    Krishnankutty N, Vannice MA (1995) Chem Mater 7:754CrossRefGoogle Scholar
  47. 47.
    Guha A, Lu W, Zawodzinski TA Jr, Schiraldi DA (2007) Carbon 45:1506CrossRefGoogle Scholar
  48. 48.
    Natarajan SK, Cossement D, Hamelin J (2007) J Electrochem Soc 154:B310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elizabeth J. Biddinger
    • 1
  • Dieter von Deak
    • 1
  • Umit S. Ozkan
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations