Topics in Catalysis

, Volume 52, Issue 11, pp 1584–1591 | Cite as

Fine Control of Nitrogen Content in N-doped Titania Photocatalysts Prepared from Layered Titania/Isostearate Nanocomposites for High Visible-Light Photocatalytic Activity

  • Taki Matsumoto
  • Yoshio Hashimoto
  • Masaru Sakai
  • Wataru Shimizu
  • Tomohiro Nishikawa
  • Yasushi Murakami
  • Nobuo Iyi
  • Bunsho Ohtani
Original Paper

Abstract

In this contribution, high photocatalytic activity under visible-light irradiation realized by means of the fine control of the nitrogen content in doped titania photocatalysts is reported. The photocatalyst samples were prepared from a layered titania/isostearate nanocomposite as precursor, and the fine control of nitrogen content was achieved by the adjustment of the amount of hybridized isostearate in the nanocomposite, preserving the crystallinity and specific surface area of the final samples. Photocatalytic activity under the UV-light irradiation (290 and 350 nm) decreases with nitrogen content. Under visible-light irradiation (470 nm), a maximum value of photocatalytic activity was observed at [N]/[Ti] = 0.0145, whereas the absorbance in the visible-light region increases with nitrogen content. Fine control of the doped-nitrogen content provides a possible route to achieving high visible-light photocatalytic activity where the maximum value of the apparent quantum yield under 470 nm light irradiation exceeds 2%.

Keywords

Nitrogen-doped Titanium oxide Visible-light photocatalyst Nitrogen content 

References

  1. 1.
    Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis. Bkc Inc, Tokyo, JapanGoogle Scholar
  2. 2.
    Hagfeldt A, Grätzel M (2000) Acc Chem Res 33:269CrossRefGoogle Scholar
  3. 3.
    Sato S (1986) Chem Phys Lett 123:126CrossRefGoogle Scholar
  4. 4.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  5. 5.
    Lindgren T, Mwabora JM, Avendano E, Jonsson J, Hoel A, Granqvist CG, Lindquist SE (2003) J Phys Chem B 107:5709CrossRefGoogle Scholar
  6. 6.
    Nakano Y, Morikawa T, Ohwaki T, Taga Y (2005) Appl Phys Lett 86:3CrossRefGoogle Scholar
  7. 7.
    Suda Y, Kawasaki H, Ueda T, Ohshima T (2004) Thin Solid Films 453–454:162CrossRefGoogle Scholar
  8. 8.
    Irie H, Washizuka S, Yoshino N, Hashimoto K (2003) Chem Commun 1298Google Scholar
  9. 9.
    Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483CrossRefGoogle Scholar
  10. 10.
    Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Jap J App Phys Part 2 Lett 40:561CrossRefGoogle Scholar
  11. 11.
    Burda C, Lou YB, Chen XB, Samia ACS, Stout J, Gole JL (2003) Nano Lett 3:1049CrossRefGoogle Scholar
  12. 12.
    Chen XB, Burda C (2004) J Phys Chem B 108:15446CrossRefGoogle Scholar
  13. 13.
    Drygas M, Czosnek C, Paine RT, Janik JF (2006) Chem Mater 18:3122CrossRefGoogle Scholar
  14. 14.
    Gole JL, Stout JD, Burda C, Lou YB, Chen XB (2004) J Phys Chem B 108:1230CrossRefGoogle Scholar
  15. 15.
    Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Appl Catal B Environ 42:403CrossRefGoogle Scholar
  16. 16.
    Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Ishihara S, Takasu Y, Murakami Y (2007) Catal Today 120:226CrossRefGoogle Scholar
  17. 17.
    Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Takasu Y, Murakami Y (2004) Chem Lett 33:1508CrossRefGoogle Scholar
  18. 18.
    Nosaka Y, Matsushita M, Nishino J, Nosaka AY (2005) Sci Technol Adv Mater 6:143CrossRefGoogle Scholar
  19. 19.
    Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349CrossRefGoogle Scholar
  20. 20.
    Wang ZP, Cai WM, Hong XT, Zhao XL, Xu F, Cai CG (2005) Appl Catal B Environ 57:223CrossRefGoogle Scholar
  21. 21.
    Augustynski J (1993) Electrochim Acta 38:43CrossRefGoogle Scholar
  22. 22.
    Bickley RI, Gonzalezcarreno T, Lees JS, Palmisano L, Tilley RJD (1991) J Solid State Chem 92:178CrossRefGoogle Scholar
  23. 23.
    Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Masaki S, Imai T, Sugimoto W, Takasu Y, Murakami Y (2005) J Mater Res 20:1308CrossRefGoogle Scholar
  24. 24.
    Matsumoto T, Murakami Y, Takasu Y (2000) J Phys Chem B 104:1916CrossRefGoogle Scholar
  25. 25.
    Murakami Y, Matsumoto T, Takasu Y (1999) J Phys Chem B 103:1836CrossRefGoogle Scholar
  26. 26.
    Yan XL, Ohno T, Nishijima K, Abe R, Ohtani B (2006) Chem Phys Lett 429:606CrossRefGoogle Scholar
  27. 27.
    Ramis GG, Busca G, Lorenzelli V, Forzatti P (1990) Appl Catal 64:243CrossRefGoogle Scholar
  28. 28.
    Tsyganenko AA, Pozdnyakov DV, Filimonov VN (1975) J Mol Struct 29:299CrossRefGoogle Scholar
  29. 29.
    Saha NC, Tompkins HG (1992) J Appl Phys 72:3072CrossRefGoogle Scholar
  30. 30.
    Qiu XF, Burda C (2007) Chem Phys 339:1CrossRefGoogle Scholar
  31. 31.
    Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Appl Catal A Gen 265:115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Taki Matsumoto
    • 1
  • Yoshio Hashimoto
    • 1
  • Masaru Sakai
    • 2
  • Wataru Shimizu
    • 2
  • Tomohiro Nishikawa
    • 2
  • Yasushi Murakami
    • 2
  • Nobuo Iyi
    • 3
  • Bunsho Ohtani
    • 4
  1. 1.Department of Electrical and Electronic Engineering, Faculty of EngineeringShinshu UniversityNaganoJapan
  2. 2.Division of Chemistry and Materials, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  3. 3.Advanced Materials LaboratoryNational Institute for Materials Science (NIMS)TsukubaJapan
  4. 4.Catalysis Research CenterHokkaido UniversitySapporoJapan

Personalised recommendations