Topics in Catalysis

, Volume 52, Issue 9, pp 1261–1271 | Cite as

Multi-level Modeling of Silica–Template Interactions During Initial Stages of Zeolite Synthesis

  • Toon Verstraelen
  • Bartłomiej M. Szyja
  • David Lesthaeghe
  • Reinout Declerck
  • Veronique Van Speybroeck
  • Michel Waroquier
  • Antonius P. J. Jansen
  • Alexander Aerts
  • Lana R. A. Follens
  • Johan A. Martens
  • Christine E. A. Kirschhock
  • Rutger A. van Santen
Original Paper


Zeolite synthesis is driven by structure-directing agents, such as tetrapropyl ammonium ions (TPA+) for Silicalite-1 and ZSM-5. However, the guiding role of these organic templates in the complex assembly to highly ordered frameworks remains unclear, limiting the prospects for advanced material synthesis. In this work, both static ab initio and dynamic classical modeling techniques are employed to provide insight into the interactions between TPA+ and Silicalite-1 precursors. We find that as soon as the typical straight 10-ring channel of Silicalite-1 or ZSM-5 is formed from smaller oligomers, the TPA+ template is partially squeezed out of the resulting cavity. Partial retention of the template in the cavity is, however, indispensable to prevent collapse of the channel and subsequent hydrolysis.


Zeolites TPA template Structure-directing agent ZSM-5 Silicalite-1 Precursors Nucleation Molecular dynamics Density functional theory 



Calculations have been carried out in the Wrocław Centre of Networking and Supercomputing (PWr), in the Department of Chemical Engineering and Chemistry (TU/e) and at the Center for Molecular Modeling (UGent). Software used for simulations was Cerius2, Materials Studio, Gaussian03, Zeobuilder, CP2K and MD-TRACKS. DL, RD, MW, VVS, AA, JAM and CEAK acknowledge support from the Fund for Scientific Research Flanders (FWO-Vlaanderen), ESA and the Belgian Prodex office. TV also acknowledges the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for funding this strategic basic research (SBO).


  1. 1.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  2. 2.
    Persson AE, Schoeman BJ, Sterte J, Otterstedt JE (1994) Zeolites 14:557CrossRefGoogle Scholar
  3. 3.
    Twomey TAM, Mackey M, Kuipers HPCE, Thompson RW (1994) Zeolites 14:162CrossRefGoogle Scholar
  4. 4.
    Burkett SL, Davis ME (1995) Chem Mater 7:920CrossRefGoogle Scholar
  5. 5.
    Dokter WH, Van Garderen HF, Beelen TPM, van Santen RA, Bras W (1995) Angew Chem Int Ed 34:73CrossRefGoogle Scholar
  6. 6.
    Corkery RW, Ninham BW (1997) Zeolites 18:379CrossRefGoogle Scholar
  7. 7.
    Gougeon R, Delmotte L, Reinheimer P, Meurer B, Chezeau JM (1998) Mag Res Chem 36:415CrossRefGoogle Scholar
  8. 8.
    Schoeman BJ (1998) Microporous Mesoporous Mater 22:9CrossRefGoogle Scholar
  9. 9.
    Tsay CS, Chiang AST (1998) Microporous Mesoporous Mater 26:89CrossRefGoogle Scholar
  10. 10.
    Watson JN, Brown AS, Iton LE, White JW (1998) J Chem Soc Faraday Trans 94:2181CrossRefGoogle Scholar
  11. 11.
    de Moor PPEA, Beelen TPM, Van Santen RA, Beck LW, Davis ME (2000) J Phys Chem B 104:7600CrossRefGoogle Scholar
  12. 12.
    Li Q, Mihailova B, Creaser D, Sterte J (2001) Microporous Mesoporous Mater 43:51CrossRefGoogle Scholar
  13. 13.
    Mintova S, Olson NH, Senker J, Bein T (2002) Angew Chem Int Ed 41:2558CrossRefGoogle Scholar
  14. 14.
    Yang S, Navrotsky A (2004) Chem Mater 16:3682CrossRefGoogle Scholar
  15. 15.
    Cheng CH, Shantz DF (2006) J Phys Chem B 110:313CrossRefGoogle Scholar
  16. 16.
    Davis TM, Drews TO, Ramanan H, He C, Dong J, Schnablegger H, Katsoulakis MA, Kokkoli E, McCormick AV, Penn LR, Tsapatsis M (2006) Nat Mater 5:400CrossRefGoogle Scholar
  17. 17.
    Haouas M, Taulelle F (2006) J Phys Chem B 110:3007CrossRefGoogle Scholar
  18. 18.
    Knight CTG, Wang J, Kinrade SD (2006) Phys Chem Chem Phys 8:3099CrossRefGoogle Scholar
  19. 19.
    Rimer JD, Fedeyko JM, Vlachos DG, Lobo RF (2006) Chem Eur J 12:2926CrossRefGoogle Scholar
  20. 20.
    van Santen RA (2006) Nature 444:46CrossRefGoogle Scholar
  21. 21.
    Aerts A, Follens LRA, Haouas M, Caremans TP, Delsuc MA, Loppinet B, Vermant J, Goderis B, Taulelle F, Martens JA, Kirschhock CEA (2007) Chem Mater 19:3448CrossRefGoogle Scholar
  22. 22.
    Kirschhock CEA, Aerts A, Martens JA (2007) Stud Surf Sci Catal 170:1473CrossRefGoogle Scholar
  23. 23.
    Kumar S, Davis TM, Ramanan H, Penn RL, Tsapatsis M (2007) J Phys Chem B 111:3398CrossRefGoogle Scholar
  24. 24.
    Pelster SA, Kalamajka R, Schrader W, Schüth F (2007) Angew Chem Int Ed 46:2299CrossRefGoogle Scholar
  25. 25.
    Patis A, Dracopoulos V, Nikolakis V (2007) J Phys Chem C 111:17478CrossRefGoogle Scholar
  26. 26.
    Fyfe CA, Darton RJ, Schneider C, Scheffler F (2008) J Phys Chem C 112:80CrossRefGoogle Scholar
  27. 27.
    Cundy CS, Henty M, Plaisted R (1995) Zeolites 15:353CrossRefGoogle Scholar
  28. 28.
    Cundy CS, Cox PA (2005) Microporous Mesoporous Mater 82:1CrossRefGoogle Scholar
  29. 29.
    Watson JN, Iton LE, Keir RI, Thomas JC, Dowling TL, White JW (1997) J Phys Chem B 101:10094CrossRefGoogle Scholar
  30. 30.
    Kirschhock CEA, Ravishankar R, Jacobs PA, Martens JA (1999) J Phys Chem B 103:11021CrossRefGoogle Scholar
  31. 31.
    Houssin CJY, Kirschhock CEA, Magusin PCMM, Mojet BL, Grobet PJ, Jacobs PA, Martens JA, van Santen RA (2003) Phys Chem Chem Phys 5:3518CrossRefGoogle Scholar
  32. 32.
    de Moor P-PEA, Beelen TPM, Komanschek BU, Beck LW, Wagner P, Davis ME, van Santen RA (1999) Chem Eur J 5:2083CrossRefGoogle Scholar
  33. 33.
    Liang D, Follens LRA, Aerts A, Martens JA, VanTendeloo G, Kirschhock CEA (2007) J Phys Chem C 111:14283CrossRefGoogle Scholar
  34. 34.
    Burkett SL, Davis ME (1995) Chem Mater 7:1453CrossRefGoogle Scholar
  35. 35.
    Lewis D, Willock D, Catlow C, Thomas JM, Hutchings G (1996) Nature 382:604CrossRefGoogle Scholar
  36. 36.
    Kinrade SD, Knight CTG, Pole DL, Syvitski RT (1998) Inorg Chem 37:4272CrossRefGoogle Scholar
  37. 37.
    Caratzoulas S, Vlachos DG (2008) J Phys Chem B 112:7CrossRefGoogle Scholar
  38. 38.
    Caratzoulas S, Vlachos DG, Tsapatsis MJ (2006) Am Chem Soc 128:16138CrossRefGoogle Scholar
  39. 39.
    Fedeyko JM, Rimer JD, Lobo RF, Vlachos DG (2004) J Phys Chem B 108:12271CrossRefGoogle Scholar
  40. 40.
    Kirschhock CEA, Kremer SPB, Grobet PJ, Jacobs PA, Martens JA (2002) J Phys Chem B 106:4897CrossRefGoogle Scholar
  41. 41.
    Kirschhock CEA, Ravishankar R, Verspeurt F, Grobet PJ, Jacobs PA, Martens JA (1999) J Phys Chem B 103:4965CrossRefGoogle Scholar
  42. 42.
    Ravishankar R, Kirschhock CEA, Knops-Gerrits PP, Feijen EJP, Grobet PJ, Vanoppen P, De Schryver FC, Miehe G, Fuess H, Schoeman BJ, Jacobs PA, Martens JA (1999) J Phys Chem B 103:4960CrossRefGoogle Scholar
  43. 43.
    Kirschhock CEA, Ravishankar R, Looveren LV, Jacobs PA, Martens JA (1999) J Phys Chem B 103:4972CrossRefGoogle Scholar
  44. 44.
    Lesthaeghe D, Vansteenkiste P, Verstraelen T, Ghysels A, Kirschhock CEA, Martens JA, Van Speybroeck V, Waroquier M (2008) J Phys Chem C 112:9186CrossRefGoogle Scholar
  45. 45.
    Catlow CRA, Cheetham AK (eds) (1997) In: New trends in materials chemistry. NATO Scientific Affairs Division. Kluwer Academic, LondonGoogle Scholar
  46. 46.
    Catlow CRA, van Santen RA (2004) Computer modelling of microporous materials. Academic Press, LondonGoogle Scholar
  47. 47.
    Yip S (2005) Handbook of materials modeling. Springer, LondonCrossRefGoogle Scholar
  48. 48.
    Auerbach SM, Ford MH, Monson PA (2005) Curr Opin Colloid Interface Sci 10:220Google Scholar
  49. 49.
    Catlow CRA, Coombes DS, Lewis DW, Pereira JCG (1998) Chem Mater 10:3249CrossRefGoogle Scholar
  50. 50.
    Pereira JCG, Catlow CRA, Price GD (1999) J Phys Chem A 103:3252CrossRefGoogle Scholar
  51. 51.
    Pereira JCG, Catlow CRA, Price GD (1999) J Phys Chem A 103:3268CrossRefGoogle Scholar
  52. 52.
    Pereira JCG, Catlow CRA, Price GD (2002) J Phys Chem A 106:130CrossRefGoogle Scholar
  53. 53.
    Lewis DW, Catlow CRA, Thomas JM (1997) Faraday Discuss 106:451CrossRefGoogle Scholar
  54. 54.
    Rao ND, Gelb LD (2004) J Phys Chem B 108:12418CrossRefGoogle Scholar
  55. 55.
    Feuston BP, Garofalini SH (2004) J Phys Chem 94:5351CrossRefGoogle Scholar
  56. 56.
    Mora-Fonz MJ, Catlow CRA, Lewis DW (2005) Angew Chem Int Ed 44:3082CrossRefGoogle Scholar
  57. 57.
    Mora-Fonz MJ, Hamad S, Catlow CRA (2007) Mol Phys 105:177CrossRefGoogle Scholar
  58. 58.
    Wu MG, Deem MWJ (2002) Chem Phys 116:2125Google Scholar
  59. 59.
    Jorge M, Auerbach SM, Monson PA (2005) J Am Chem Soc 127:14388CrossRefGoogle Scholar
  60. 60.
    Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian Inc., Wallingford, CTGoogle Scholar
  61. 61.
    Magusin PCMM, Zorin VE, Aerts A, Houssin CJY, Yakovlev AL, Kirschhock CEA, Martens JA, van Santen RA (2005) J Phys Chem B 109:22767CrossRefGoogle Scholar
  62. 62.
    Becke AD (2005) J Chem Phys 98:5648CrossRefGoogle Scholar
  63. 63.
    Zygmunt SA, Mueller RM, Curtiss LA, Iton LE (1998) J Mol Struct 430:9Google Scholar
  64. 64.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
  65. 65.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669CrossRefGoogle Scholar
  66. 66.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  67. 67.
    Lippert G, Hutter J, Ballone P, Parrinello M (1996) J Phys Chem 100:6231CrossRefGoogle Scholar
  68. 68.
    Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703CrossRefGoogle Scholar
  69. 69.
    Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58:3641CrossRefGoogle Scholar
  70. 70.
    Verstraelen T, Van Speybroeck V, Waroquier M (2008) J Chem Inf Model 48:1530CrossRefGoogle Scholar
  71. 71.
    Trinh TT, Jansen APJ, van Santen RA (2006) J Phys Chem B 110:23099CrossRefGoogle Scholar
  72. 72.
    Van Speybroeck V, Moonen K, Hemelsoet K, Stevens CV, Waroquier M (2006) J Am Chem Soc 128:8468CrossRefGoogle Scholar
  73. 73.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  74. 74.
    Garofalini SH, Martin G (1994) J Phys Chem 98:1311CrossRefGoogle Scholar
  75. 75.
    van Duin ACT, Dasgupta S, Lorant F, Goddard WA III (2001) J Phys Chem A 105:9396CrossRefGoogle Scholar
  76. 76.
    Nielson KD, van Duin ACT, Oxgaard J, Deng W-Q, Goddard WA III (2005) J Phys Chem A 109:493CrossRefGoogle Scholar
  77. 77.
    Strachan A, Kober EM, van Duin ACT, Oxgaard J, Goddard WA III (2005) J Chem Phys 122:54501CrossRefGoogle Scholar
  78. 78.
    Strachan A, van Duin ACT, Chakraborty D, Dasgupta S, Goddard WA III (2003) Phys Rev Lett 91:98301CrossRefGoogle Scholar
  79. 79.
    van Beest BWH, Kramer GJ, van Santen RA (1990) Phys Rev Lett 64:1955CrossRefGoogle Scholar
  80. 80.
    Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest Hagler M (1988) Protein Struct Funct Genet 4:31CrossRefGoogle Scholar
  81. 81.
    Schroder KP, Sauer J, Leslie M, Catlow CRA, Thomas JM (1992) Chem Phys Lett 188:320CrossRefGoogle Scholar
  82. 82.
    Gale JD, Henson NJ (1994) J Chem Soc Faraday Trans 90:3175CrossRefGoogle Scholar
  83. 83.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024CrossRefGoogle Scholar
  84. 84.
    Verstraelen T, Van Houteghem M, Van Speybroeck V, Waroquier M (2008) J Chem Inf Model 48:2414CrossRefGoogle Scholar
  85. 85.
    Fricke R, Kosslick H, Lischke G, Richter M (2000) Chem Rev 100:2303CrossRefGoogle Scholar
  86. 86.
    Lesthaeghe D, De Sterck B, Van Speybroeck V, Marin GB, Waroquier M (2007) Angew Chem Int Ed 46:1311CrossRefGoogle Scholar
  87. 87.
    Kelly CP, Cramer CJ, Truhlar DGJ (2005) Chem Theory Comput 1:1133CrossRefGoogle Scholar
  88. 88.
    Pratt LM, Streitwieser A (2003) J Org Chem 68:2830CrossRefGoogle Scholar
  89. 89.
    Navrotsky A (2005) Curr Opin Colloid Interface Sci 10:195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Toon Verstraelen
    • 1
  • Bartłomiej M. Szyja
    • 2
    • 3
  • David Lesthaeghe
    • 1
  • Reinout Declerck
    • 1
    • 4
  • Veronique Van Speybroeck
    • 1
  • Michel Waroquier
    • 1
  • Antonius P. J. Jansen
    • 2
  • Alexander Aerts
    • 5
  • Lana R. A. Follens
    • 5
  • Johan A. Martens
    • 5
  • Christine E. A. Kirschhock
    • 5
  • Rutger A. van Santen
    • 2
  1. 1.Center for Molecular ModelingGhent UniversityGhentBelgium
  2. 2.Department of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Faculty of Chemistry, Department of Fuels Chemistry and TechnologyWrocław University of TechnologyWrocławPoland
  4. 4.The Boston Consulting GroupBrusselsBelgium
  5. 5.K. U. Leuven, Centre for Surface Chemistry and CatalysisLeuvenBelgium

Personalised recommendations