Topics in Catalysis

, Volume 52, Issue 6–7, pp 912–919 | Cite as

Role of Preparation Techniques in the Activity of Au/TiO2 Nanostructures Stabilised on SiO2: CO and Preferential CO Oxidation

  • A. Beck
  • A. Horváth
  • G. Stefler
  • M. S. Scurrell
  • L. Guczi
Original Paper

Abstract

Au colloid and titania in different sequence or Au-oxide nano ensembles preformed in hydrosol were deposited on inert amorphous silica or mesoporous SBA-15. It was compared with gold colloid adsorbed on TiO2 or silica support. The formation of the Au/TiO2 interface is discussed in terms of surface charges. Preferential CO oxidation in the presence of hydrogen (PROX) has been correlated with the CO oxidation activity and structural properties, perimeter and the influence of the TiO2 morphology on the catalytic activity has been demonstrated.

Keywords

Gold sol Gold/oxide interface Preferential CO oxidation 

References

  1. 1.
    Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. In: Hutchings GJ (ed). Catalytic science series, vol 6. Imperial College PressGoogle Scholar
  2. 2.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405CrossRefGoogle Scholar
  3. 3.
    Liu H, Kozlov AI, Kozlova AP, Shido T, Asakura K, Iwasawa Y (1999) J Catal 185:252CrossRefGoogle Scholar
  4. 4.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plazak V, Behm RJ (2001) J Catal 197:113CrossRefGoogle Scholar
  5. 5.
    Haruta M (2004) J New Mater Electrochem Syst 7:163Google Scholar
  6. 6.
    Molina LM, Hammer B (2005) Appl Catal A: Gen 291:21CrossRefGoogle Scholar
  7. 7.
    Okumura M, Kitagawa Y, Haruta M, Yamaguchi K (2005) Appl Catal A:Gen 291:37CrossRefGoogle Scholar
  8. 8.
    Bond GC, Thompson DT (2000) Gold Bull 33:41Google Scholar
  9. 9.
    Venezia M, Liotta FL, Pantaleo G, Beck A, Horváth A, Geszti O, Kocsonya A, Guczi L (2006) Appl Catal A 310:114CrossRefGoogle Scholar
  10. 10.
    Horváth A, Beck A, Sárkány A, Stefler Gy, Varga Zs, Geszti O, Tóth L, Guczi L (2006) J Phys Chem B 110:15417CrossRefGoogle Scholar
  11. 11.
    Guczi L, Beck A, Horváth A, Sárkány A, Stefler Gy, Geszti O (2007) Stud Surf Sci Catal 172:221Google Scholar
  12. 12.
    Beck A, Horváth A, Stefler Gy, Katona R, Geszti O, Tolnai Gy, Liotta L, Guczi L (2008) Catal Today 139:180CrossRefGoogle Scholar
  13. 13.
    Guczi L, Beck A, Frey K (2009) Gold Bull 42:5Google Scholar
  14. 14.
    Haruta M (2004) Gold Bull 37:27Google Scholar
  15. 15.
    Schumacher B, Denkwitz Y, Plzak V, Kinne M, Behm RJ (2004) J Catal 224:449CrossRefGoogle Scholar
  16. 16.
    Raskó J, Kiss J (2006) Catal Lett 111:87CrossRefGoogle Scholar
  17. 17.
    Grisel RJH, Neuwenhuys BE (2001) J Catal 199:48CrossRefGoogle Scholar
  18. 18.
    Quinet E, Piccolo L, Daly H, Meunier FC, Morfin F, Valcarcel A, Diehl F, Avenier P, Caps V, Rousset J-L (2008) Catal Today 138:43CrossRefGoogle Scholar
  19. 19.
    Pansare SS, Sirijaruphan A, Goodwin JG Jr (2005) J Catal 234:151CrossRefGoogle Scholar
  20. 20.
    Bus E, Miller JT, van Bokhoven JA (2005) J Phys Chem B 109:14581CrossRefGoogle Scholar
  21. 21.
    Shi H, Stampfl C (2007) Phys Rev B 76:075327CrossRefGoogle Scholar
  22. 22.
    Fernández EM, Ordejón P, Balbás LC (2005) Chem Phys Lett 408:252CrossRefGoogle Scholar
  23. 23.
    Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) J Catal 240:222CrossRefGoogle Scholar
  24. 24.
    Hvolbaek B, Janssens TVW, Causen BS, Falsig H, Christensen CH, Norskov JK (2007) NanoToday 2:14Google Scholar
  25. 25.
    Sun Q, Jena P, Kim YD, Fischer M, Ganteför G (2004) J Chem Phys 120:6510CrossRefGoogle Scholar
  26. 26.
    Kim YD, Fiscer M, Ganteför G (2003) Chem Phys Lett 377:170CrossRefGoogle Scholar
  27. 27.
    Okumura M, Tsubota S, Haruta M (2003) J Mol Catal A 199:73CrossRefGoogle Scholar
  28. 28.
    Naito S, Tanimoto M (1988) J Chem Soc, Chem Commun 832Google Scholar
  29. 29.
    Okumura M, Kitagawa Y, Yamaguchi K, Akita T, Tsubota S, Haruta M (2003) Chem Lett 32:822CrossRefGoogle Scholar
  30. 30.
    Sivadinaraya C, Choudhary TV, Daemon LL, Eckert J, Goodman DW (2004) J Am Chem Soc 126:38CrossRefGoogle Scholar
  31. 31.
    Barrio L, Liu P, Rodriguez JA, Campos-Martin JM, Fierro JLG (2007) J Phys Chem C 111:19001CrossRefGoogle Scholar
  32. 32.
    Grisel RJH, Weststrate CJ, Goossens A, Craje MWJ, van der Kraan AM, Nieuwenhuys BE (2002) Catal Today 72:123CrossRefGoogle Scholar
  33. 33.
    Calla JT, Davis RJ (2005) Ind Eng Chem Res 44:5403CrossRefGoogle Scholar
  34. 34.
    Gavril D, Georgaka A, Loukopoulos V, Karaiskakis G, Nieuwenhuys BE (2006) Gold Bull 39:192Google Scholar
  35. 35.
    Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129CrossRefGoogle Scholar
  36. 36.
    Rossignol C, Arrii S, Morfin f, Piccolo L, Piccolo V, Rousset J-L (2005) J Catal 230:476CrossRefGoogle Scholar
  37. 37.
    Quinet E, Morfin F, Diehl F, Avenier P, Caps V, Rousset J-L (2008) Appl Catal B: Environ 80:195CrossRefGoogle Scholar
  38. 38.
    Imai H, Daté M, Tsubota S (2008) Catal Lett 124:68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Beck
    • 1
  • A. Horváth
    • 1
  • G. Stefler
    • 1
  • M. S. Scurrell
    • 3
  • L. Guczi
    • 1
    • 2
  1. 1.Institutes of IsotopesHASBudapestHungary
  2. 2.Chemical Research CenterHASBudapestHungary
  3. 3.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations