Topics in Catalysis

, Volume 52, Issue 6–7, pp 544–556 | Cite as

Fe- and Eu-doped TiO2 Photocatalytical Materials Prepared by High Energy Ball Milling

  • Florin Vasiliu
  • L. Diamandescu
  • D. Macovei
  • C. M. Teodorescu
  • D. Tarabasanu-Mihaila
  • A. M. Vlaicu
  • V. Parvulescu
Original Paper

Abstract

TiO2 nanopowders, doped with Fe3+ and Eu3+ were obtained by high-energy ball milling and their physical properties were investigated as a function of the doping content and ball milling time. A noticeable red shift and high photoactivity in the degradation and catalytic oxidation reactions of styrene and phenol were found for all doped specimens.

Keywords

Photocatalysis Doped TiO2 Mechanochemistry Structure characterisation Optical properties 

References

  1. 1.
    Bahnemann W, Muneer M, Haque MM (2007) Catal Today 124:133CrossRefGoogle Scholar
  2. 2.
    Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Appl Catal A Gen 244:383CrossRefGoogle Scholar
  3. 3.
    He J, Zhao J, Shen T, Hidaka H, Serpone N (1997) J Phys Chem B 101:9027CrossRefGoogle Scholar
  4. 4.
    Cahen D, Hodes G, Graetzel M, Guillemoles JF, Riess I (2000) J Phys Chem B 104:2053CrossRefGoogle Scholar
  5. 5.
    Kormann C, Bahnemann D, Hoffmann M (1988) J Phys Chem 92:5196CrossRefGoogle Scholar
  6. 6.
    Soria J, Conesa JC, Augugliaro V, Palmisano L, Schiavello M, Sclafani A (1991) J Phys Chem 95:274CrossRefGoogle Scholar
  7. 7.
    Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Wang C, Zakaria R, Ying JY (1998) J Phys Chem B 102:10871CrossRefGoogle Scholar
  9. 9.
    Cao Y, Zhang X, Yang W, Du H, Bai Y, Li T, Yao J (2000) Chem Mater 12:3445CrossRefGoogle Scholar
  10. 10.
    Zhou M, Yu J, Cheng B, Yu H (2005) Mater Chem Phys 93:159CrossRefGoogle Scholar
  11. 11.
    Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006) J Photochem Photobiol A Chem 180:196CrossRefGoogle Scholar
  12. 12.
    Lee K, Lee NH, Shin SH, Lee HG, Kim SJ (2006) Mater Sci Eng B 129:109CrossRefGoogle Scholar
  13. 13.
    Colmenares JC, Aramendy MA, Marinas A, Marinas JM, Urbano FJ (2006) Appl Catal A Gen 306:120CrossRefGoogle Scholar
  14. 14.
    Xu AW, Gao Y (2002) J Catal 207:151CrossRefGoogle Scholar
  15. 15.
    Liu Z, Zhang J, Han B, Du J, Mu T, Wang Y, Sun Z (2005) Microporous Mesoporous Mater 81:169CrossRefGoogle Scholar
  16. 16.
    Zeng QG, Ding ZJ, Zhang ZM (2006) J Lumin 118:301CrossRefGoogle Scholar
  17. 17.
    Yang P, Lu C, Hua N, Du Y (2002) Mater Lett 57:794CrossRefGoogle Scholar
  18. 18.
    Matsuo S, Sakaguchi N, Yamada K, Matsuo T, Wakita H (2004) Appl Surf Sci 228:223CrossRefGoogle Scholar
  19. 19.
    Kim DH, Hong HS, Kim SJ, Song JS, Lee KS (2004) J Alloy Compd 375:259CrossRefGoogle Scholar
  20. 20.
    Shifu C, Lei C, Shen G, Gengyu C (2005) Chem Phys Lett 413:404CrossRefGoogle Scholar
  21. 21.
    Xiaoyan P, Dongmei J, Yan L, Xueming M (2006) J Magn Magn Mater 305:388CrossRefGoogle Scholar
  22. 22.
    Cordishi D, Burriesci N, D’Alba F, Petrera M, Polizzotti G, Schiavello M (1985) J Solid State Chem 56:182CrossRefGoogle Scholar
  23. 23.
    Shannon RD (1976) Acta Crystallogr A32:751Google Scholar
  24. 24.
    Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Phys Rev B 52:2995CrossRefGoogle Scholar
  25. 25.
    Gennari FC, Pasquevich DM (2004) J Am Ceram Soc 82:1915CrossRefGoogle Scholar
  26. 26.
    Su C, Tseng C-M, Chen L-F, You B-H, Hsu B-C, Chen S-S (2006) Thin Solid Films 498:259CrossRefGoogle Scholar
  27. 27.
    Wagner CD, Riggs WM, Davis LE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation Physical Electronics Division, USAGoogle Scholar
  28. 28.
    Gudat W, Eastman D (1976) J Vac Sci Technol 13:831CrossRefGoogle Scholar
  29. 29.
    Alonso M, Cimino R, Horn K (1990) Phys Rev Lett 64:1947CrossRefGoogle Scholar
  30. 30.
    Descostes M, Mercier F, Thromat N, Beaucaire C, Gautier-Soyer M (2000) Appl Surf Sci 165:288CrossRefGoogle Scholar
  31. 31.
    Bhargava G, Gouzman I, Chun CM, Ramanarayanan TA, Bernasek SL (2007) Appl Surf Sci 253:4322CrossRefGoogle Scholar
  32. 32.
    Schneider WD, Laubschat C, Nowik I, Kaindl G (1981) Phys Rev B 24:5422CrossRefGoogle Scholar
  33. 33.
    Nilsson O, Norberg CH, Bergmark JE, Fahlman A, Nordling C, Siegbahn K (1968) Helv Phys Acta 41:1064Google Scholar
  34. 34.
    Kurmaev EZ, Cherkashenko VM, Neumann M (1998) J Electron Spectrosc Relat Phenomena 96:187CrossRefGoogle Scholar
  35. 35.
    Wertheim GK, Sampathkumaran EV, Laubschat C, Kaindl G (1985) Phys Rev B 31:6836CrossRefGoogle Scholar
  36. 36.
    Greegor RB, Lytle FW (1980) J Catal 63:476CrossRefGoogle Scholar
  37. 37.
    Jacobs JWM, Kampers FWH, Rikken JMG, Bulle-Lieuwma CWT, Koningsberger DC (1989) J Electrochem Soc 136:2914CrossRefGoogle Scholar
  38. 38.
    Balcells LI, Frontera C, Sandiumenge F, Roig A, Martínez B (2006) Appl Phys Lett 89:122501CrossRefGoogle Scholar
  39. 39.
    Li W, Frenkel AI, Woicik JC, Ni C, Ismat Shah S (2005) Phys Rev B 72:155315CrossRefGoogle Scholar
  40. 40.
    Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi 15:627CrossRefGoogle Scholar
  41. 41.
    Delgass WN (1979) Spectroscopy in heterogeneous catalysis. Academic Press, New YorkGoogle Scholar
  42. 42.
    Miyake Y, Tada H (2004) J Chem Eng Jpn 37:630CrossRefGoogle Scholar
  43. 43.
    Oh SM, Kim SS, Lee JE, Ishigaki T, Park DW (2003) Thin Solid Films 435:252CrossRefGoogle Scholar
  44. 44.
    Litter MI, Navio JA (1996) J Photochem Photobiol A Chem 98:171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Florin Vasiliu
    • 1
  • L. Diamandescu
    • 1
  • D. Macovei
    • 1
  • C. M. Teodorescu
    • 1
  • D. Tarabasanu-Mihaila
    • 1
  • A. M. Vlaicu
    • 1
  • V. Parvulescu
    • 2
  1. 1.National Institute of Materials PhysicsBucharest-MagureleRomania
  2. 2.Institute of Physical Chemistry “Ilie Murgulescu”, Romanian AcademyBucharestRomania

Personalised recommendations