Advertisement

Topics in Catalysis

, Volume 52, Issue 5, pp 492–500 | Cite as

Ceria and Gold/Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons: An In Situ DRIFTS Study

  • Benjamín Solsona
  • Tomás GarcíaEmail author
  • Ramón Murillo
  • Ana M. Mastral
  • Edwin Ntainjua Ndifor
  • Casey E. Hetrick
  • Michael D. Amiridis
  • Stuart H. Taylor
Original Paper

Abstract

Gold catalysts supported on nano-crystalline ceria prepared by deposition precipitation have been characterised and tested for the total oxidation of naphthalene. Two different precipitation methods were used to prepare the nano-crystalline ceria supports and it was observed that although both supports were active materials for naphthalene oxidation, ceria synthesized by homogeneous precipitation with urea was markedly more active than CeO2 precipitated by carbonate. The addition of gold to both active CeO2 catalysts resulted in different effects for the total oxidation of naphthalene. Gold addition promotes the naphthalene conversion to CO2 when ceria is prepared by precipitation with carbonates, whilst the light off temperature is shifted towards higher temperatures when gold is added to ceria synthesized by the urea method. This behaviour has been related to a change in the support characteristics and a removal of the carbonate surface species, when gold is deposited onto the ceria support.

Keywords

Catalytic total oxidation Polycyclic aromatic hydrocarbons Ceria Gold 

References

  1. 1.
    Mastral AM, Callén MS, Murillo R, García T (1999) Environ Sci Technol 33:3177CrossRefGoogle Scholar
  2. 2.
    Mastral AM, Callén MS (2000) Environ Sci Technol 34:3051CrossRefGoogle Scholar
  3. 3.
    Zhang X-W, Shen S-C, Hidajat K, Kawi S, Yu LE, Simon KY (2004) Catal Lett 96:87CrossRefGoogle Scholar
  4. 4.
    Ntainjua Ndifor E, Garcia T, Solsona B, Taylor SH (2007) Appl Catal B 76:248CrossRefGoogle Scholar
  5. 5.
    Saracco G, Specchia V (2000) Chem Eng Sci 55:897CrossRefGoogle Scholar
  6. 6.
    Carno J, Berg M, Jaras S (1996) Fuel 75:959CrossRefGoogle Scholar
  7. 7.
    Klingstedt F, Kalantar Neyestanaki A, Lindfors L-E, Salmi T, Heikkilä T, Laine E (2003) Appl Catal A Gen 239:229CrossRefGoogle Scholar
  8. 8.
    Ferrandon M, Bjornbom E (2001) J Catal 200:148CrossRefGoogle Scholar
  9. 9.
    Liljelind P, Unsworth J, Maaskant O, Marklund S (2001) Chemosphere 42:615CrossRefGoogle Scholar
  10. 10.
    Weber R, Sadurai T, Hagenmaier H (1999) Appl Catal B 20:24Google Scholar
  11. 11.
    García T, Murillo R, Cazorla-Amorós D, Mastral AM, Linares-Solano A (2004) Carbon 42:1689Google Scholar
  12. 12.
    Garcia T, Solsona B, Taylor SH (2005) Catal Lett 105(3–4):183CrossRefGoogle Scholar
  13. 13.
    Hutchings GJ (1985) J Catal 96:292CrossRefGoogle Scholar
  14. 14.
    Solsona BE, Garcia T, Jones C, Taylor SH, Carley AF, Hutchings GJ (2006) Appl Catal A Gen 312:67CrossRefGoogle Scholar
  15. 15.
    Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A (2003) Appl Catal B 40:43CrossRefGoogle Scholar
  16. 16.
    Meunier FC, Tibiletti D, Goguet A, Reid D, Burch R (2005) Appl Catal A Gen 289:104CrossRefGoogle Scholar
  17. 17.
    Binet C, Daturi M, Lavalley J-C (1999) Catal Today 50:207CrossRefGoogle Scholar
  18. 18.
    Romero-Sarria F, Martínez LM, Centeno MA, Odriozola JA (2007) J Phys Chem C 111:14469CrossRefGoogle Scholar
  19. 19.
    Yee A, Morrison SJ, Idriss H (1999) J Catal 186:279CrossRefGoogle Scholar
  20. 20.
    Natile MM, Boccaletti G, Glisenti A (2005) Chem Mater 17:6272CrossRefGoogle Scholar
  21. 21.
    Siokou A, Nix RM (1999) J Phys Chem B 103:6984CrossRefGoogle Scholar
  22. 22.
    Andreeva D, Nedyalkova R, Ilieva L, Abrashev MV (2004) Appl Catal B 52:157CrossRefGoogle Scholar
  23. 23.
    Graham GW, Weber WH, Peters CR, Usmen R (1991) J Catal 130:310CrossRefGoogle Scholar
  24. 24.
    Sheng P-Y, Bowmaker GA, Idriss H (2004) Appl Catal A Gen 261:171CrossRefGoogle Scholar
  25. 25.
    Lichtenberger J, Amiridis MD (2004) J Catal 223:296CrossRefGoogle Scholar
  26. 26.
    Lichtenberger J, Amiridis MD (2004) Catal Today 98:447CrossRefGoogle Scholar
  27. 27.
    García T, Solsona B, Taylor SH (2006) Appl Catal B 66:92CrossRefGoogle Scholar
  28. 28.
    Arroyo LJ, Li H, Teppen BJ, Johnston CT, Boyd SA (2005) Clays Clay Miner 53:587CrossRefGoogle Scholar
  29. 29.
    Hanna K, Carteret C (2007) Chemosphere 70:178CrossRefGoogle Scholar
  30. 30.
    Yokoyama T, Fujita N (2004) J Jap Petro Inst 47:341CrossRefGoogle Scholar
  31. 31.
    Dobson KD, McQuillan AJ (2000) Spectro Acta A 56:557CrossRefGoogle Scholar
  32. 32.
    Lai S-Y, Qiu Y, Wang S (2006) J Catal 217:303–313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Benjamín Solsona
    • 1
  • Tomás García
    • 2
    Email author
  • Ramón Murillo
    • 2
  • Ana M. Mastral
    • 2
  • Edwin Ntainjua Ndifor
    • 3
  • Casey E. Hetrick
    • 4
  • Michael D. Amiridis
    • 4
  • Stuart H. Taylor
    • 3
  1. 1.Departament d′Enginyeria QuímicaUniversitat de ValènciaValenciaSpain
  2. 2.Instituto de Carboquímica (CSIC)ZaragozaSpain
  3. 3.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK
  4. 4.Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations