Topics in Catalysis

, Volume 52, Issue 5, pp 528–541 | Cite as

The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons

  • Edwin Ntainjua N.
  • Stuart H. TaylorEmail author
Original Paper


Polycyclic Aromatic Hydrocarbons (PAHs) are a group of Volatile Organic Compounds (VOCs), which have serious health problems associated with their emission into the atmosphere. Catalytic oxidation is an effective abatement process to control PAH emissions, and the types of catalysts investigated have been reviewed. The majority of studies have used naphthalene as a model PAH, and in particular, catalysts containing palladium and platinum have demonstrated high activity for total oxidation. Catalysts based on the precious metals include those supported on high surface area supports, which have also been modified by adding further components, and metal exchanged zeolites. Metal oxide catalysts have also been employed and the most active for total oxidation are ceria-based. Studies of PAH total oxidation have largely been reported only in the last 10 years, and there still remains wide scope to develop improved catalysts and understand their catalytic mechanisms.


Polycyclic aromatic hydrocarbons PAHs Catalytic oxidation 


  1. 1.
    Zhang XW, Shen SC, Yu LE, Kawi S, Hidajat K, Simon Ng KY (2003) Appl Catal A Gen 250:341CrossRefGoogle Scholar
  2. 2.
    Ho KF, Lee SC (2002) Sci Total Environ 289:145CrossRefGoogle Scholar
  3. 3.
    US EPA, Health and Environmental Effects Profile for Naphthalene (EPA/600/x-86/241)Google Scholar
  4. 4.
    US EPA, Toxicology Review of NaphthaleneGoogle Scholar
  5. 5.
    Agency for Toxic Substances, Disease Registry (ATSDR) (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta, GA, USa. Department of Health and Human Services, Public Health ServiceGoogle Scholar
  6. 6.
    Illinois Department of Public Health, Division of Environmental Health, Polycyclic Aromatic Hydrocarbons (PAHs), 525 W. Jefferson St. Springfield, IL 62761Google Scholar
  7. 7.
    Finlayson-Pitts BJ, Pitts JN Jr (1999) Chemistry of the upper and lower atmosphere, 1st edn. Academic Press, London, pp 436–526Google Scholar
  8. 8.
    Neyestanaki AK, Lindfors L-E (1998) Fuel 77:1727CrossRefGoogle Scholar
  9. 9.
    Neyestanaki AK, Lindfors L-E, Ollonqvist T, Vayrynen J (2000) Appl Catal A Gen 196:233CrossRefGoogle Scholar
  10. 10.
    Chen G, Strevett KA, Vanegas BA (2001) Biodegradation 12:433CrossRefGoogle Scholar
  11. 11.
    Cooper W, Nickelsen MG, Green RV, Mezyk SP (2002) Radiat Phys Chem 65:571CrossRefGoogle Scholar
  12. 12.
    Legube B, Guyon S, Sugimitsu H, Dore M (1986) Water Res 20:197CrossRefGoogle Scholar
  13. 13.
    Lee SY, Kim SJ (2002) Appl Clay Sci 22:55CrossRefGoogle Scholar
  14. 14.
    Huang HL, Lee WM (2002) J Environ Eng (ASCE) 128:60CrossRefGoogle Scholar
  15. 15.
    US, EPA, Air Pollution Control Technology Fact Sheet (EPA-452/F-03-022)Google Scholar
  16. 16.
    Zhang XW, Shen SC, Hidajat K, Kawi S, Yu LE, Simon Ng KY (2004) Catal Lett 96:87CrossRefGoogle Scholar
  17. 17.
    Ferrandon M, Bjornbom E (2001) J Catal 200:148CrossRefGoogle Scholar
  18. 18.
    Carno J, Berg M, Järås S (1996) Fuel 75:959CrossRefGoogle Scholar
  19. 19.
    Klingstedt F, Neyestanaki AK, Lindfors L-E, Salmi T, Heikkila T, Laine E (2002) Appl Catal A Gen 6210:1Google Scholar
  20. 20.
    Ntainjua N. E, Garcia NT, Taylor SH (2006) Catal Lett 110:125CrossRefGoogle Scholar
  21. 21.
    Shie JL, Chang CY, Chen JH, Tsai WT, Chen YH, Chiou CS, Chang CF (2005) Appl Catal B Environ 56:289CrossRefGoogle Scholar
  22. 22.
    Musialik-Piotrowska A, Syczewska K, Mendyka B (1998) Environ Prot Eng 24:123Google Scholar
  23. 23.
    Ntainjua N. E, Carley NAF, Taylor SH (2008) Catal Today 137:362CrossRefGoogle Scholar
  24. 24.
    Garcia T, Solsona B, Taylor SH (2005) Catal Lett 105:183CrossRefGoogle Scholar
  25. 25.
    Garcia T, Solsona B, Taylor SH (2006) Appl Catal B Environ 66:92CrossRefGoogle Scholar
  26. 26.
    Ntainjua N. E, Garcia NT, Solsona B, Taylor SH (2007) Appl Catal B Environ 76:248CrossRefGoogle Scholar
  27. 27.
    Weber R, Sakurai T, Hagenmaier H (1999) Appl Catal B Environ 20:249CrossRefGoogle Scholar
  28. 28.
    Garcia T, Solsona B, Cazorla-Amoros D, Linares-Solano A, Taylor SH (2006) Appl Catal B Environ 62:66CrossRefGoogle Scholar
  29. 29.
    Bosch H, Janssen F (1988) Catal Today 2:369CrossRefGoogle Scholar
  30. 30.
    Ntainjua N. E, Garcia N,T, Solsona B, Taylor SH (2008) Catalysis Today 137:373CrossRefGoogle Scholar
  31. 31.
    Isogai Y, Tanaami K, Onodera M, Naka T (2007) US Patent 20070191218, 16th August, 2007Google Scholar
  32. 32.
    Spinicci R, Tofanari A (2002) Appl Catal A 227:159CrossRefGoogle Scholar
  33. 33.
    Müller CA, Maciejewsky M, Koeppel RA, Baiker A (1999) Catal Today 47:245CrossRefGoogle Scholar
  34. 34.
    Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K (2000) Catal Today 59:69CrossRefGoogle Scholar
  35. 35.
    Waiwright MS, Foster NR (1979) Catal Rev 19:211CrossRefGoogle Scholar
  36. 36.
    Bampenrat A, Meeyoo V, Kitiyanan B, Rangsunvigit P, Rirksomboon T (2008) Catal Commun 9:2349CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Cardiff Catalysis InstituteCardiff University, School of ChemistryCardiffUK

Personalised recommendations