Solvent Effects on Fructose Dehydration to 5-Hydroxymethylfurfural in Biphasic Systems Saturated with Inorganic Salts


Furan derivatives, such as 5-hydroxymethylfurfural (HMF), obtained from acid-catalyzed dehydration of carbohydrates, can serve as renewable chemical platforms for the production of fuels and chemical intermediates. Addition of an inorganic salt to concentrated aqueous solutions of fructose (30 wt% fructose on salt free basis) in biphasic systems containing an organic extracting phase improves HMF yields by increasing the partitioning of HMF into the extracting phase, as measured by the partition coefficient, R, equal to the concentration of HMF in the organic phase normalized by the concentration in the aqueous phase. We have studied the impact of solvent choice on HMF yield using primary and secondary alcohols, ketones, and cyclic ethers in the C3–C6 range as extracting solvents in biphasic systems saturated with NaCl. Biphasic systems containing C4 solvents generated the highest HMF yields within each solvent class. Tetrahydrofuran demonstrated the best combination of high HMF selectivity (83%) and high extracting power (R = 7.1) at 423 K. The presence of NaCl provided the additional benefit of creating biphasic systems using solvents that are completely miscible with water in the absence of salt. We have also studied the impact of different salts on HMF yield in systems using 1-butanol as the extracting solvent. Na+ and K+ showed the best combination of extracting power and HMF selectivity of the monovalent and divalent chloride salts tested. Changing the anion of the salt from Cl to Br resulted in R-values and HMF selectivity values resembling the non-salt system, while changing to the SO4 2− divalent species generated a high R-value (8.1), but a low HMF selectivity value (71%).

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) Chem Sus Chem 1:283

  2. 2.

    Bicker M, Kaiser D, Ott L, Vogel H (2005) J Supercrit Fluids 36:118

  3. 3.

    Werpy T, Petersen G (2004) Top Value Added Chemicals from Biomass: Vol 1—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Tech. Report No. Report No. NREL/TP-510-35523 (National Renewable Energy Laboratory)

  4. 4.

    Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446

  5. 5.

    Gandini A, Belgacem MN (1997) Prog Polym Sci 22:1203

  6. 6.

    Chaabouni A et al (1999) Journal de la Societe Chimique de Tunisie 4:547

  7. 7.

    Rapp KM (1987) US Patent, 4,740,605

  8. 8.

    Brown DW, Floyd AJ, Kinsman RG, Roshan-Ali Y (1982) J Chem Technol Biotechnol 32:920

  9. 9.

    Musau RM, Munavu RM (1987) Biomass 13:67

  10. 10.

    Nakamura Y, Morikawa S (1980) Bull Chem Soc Jpn 53:3705

  11. 11.

    Szmant HH, Chundury DD (1981) J Chem Technol and Biotechnol 31:135

  12. 12.

    van Dam HE, Kieboom APG, van Bekkum H (1986) Starch 38:95

  13. 13.

    Kuster BFM, van der Steen HJC (1977) Starch 29:99

  14. 14.

    Peniston QP (1956) U.S. Patent 2,750,394

  15. 15.

    El Hajj T, MasRoua A, Martin JC, Descotes G (1987) Bulletin de la Societe Chimique de France 5:855

  16. 16.

    Rigal L, Gaset A, Gorrichon J-P (1981) Ind Eng Chem Prod Res Dev 20:719

  17. 17.

    Moreau C et al (1996) Appl Catal A Gen 145:211

  18. 18.

    Rivalier P, Duhamet J, Moreau C, Durand R (1995) Catal Today 24:165

  19. 19.

    Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11

  20. 20.

    Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Nature 447:982

  21. 21.

    Gruter G, Maria JDF (2007) Avantis International, European Patent Office EP20060075564

  22. 22.

    Jain MK and Datta R (1991) US Patent Office 5063156

  23. 23.

    Krouwel PG, Groot WJ, Kossen NWF, van der Laan WFM (1983) Enzyme Microb Technol 5:46

  24. 24.

    Eisen EO, Joffe J (1966) J Chem Eng Data 11:480

  25. 25.

    Tan TC, Aravinth S (1999) Fluid Phase Equilib 163:243

  26. 26.

    Treybal RE (1963) Liquid Extraction, 2nd edn. McGraw Hill, New York

  27. 27.

    Reber LA, McNabb WW, Lucasse WW (1942) J Phys Chem 46:500

  28. 28.

    Kuster BFM, van der Baan HS (1977) Carbohydr Res 54:165

  29. 29.

    Kuster BFM (1990) Starch 42:314

  30. 30.

    Moreau C, Finiels A, Vanoye L (2006) J Mol Catal A Chem 253:165

  31. 31.

    Gorgenyi M, Dewulf J, Van Langenhove H, Heberger K (2006) Chemosphere 65:802

Download references


This work was supported by the National Science Foundation Chemical and Transport Systems Division of the Directorate for Engineering, the Great Lakes Bioenergy Research Center (GLBRC), and Virent Energy Systems.

Author information

Correspondence to James A. Dumesic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Román-Leshkov, Y., Dumesic, J.A. Solvent Effects on Fructose Dehydration to 5-Hydroxymethylfurfural in Biphasic Systems Saturated with Inorganic Salts. Top Catal 52, 297–303 (2009).

Download citation


  • HMF
  • Solvent
  • Acid catalysis
  • Biphasic
  • Fructose