Topics in Catalysis

, Volume 52, Issue 3, pp 297–303 | Cite as

Solvent Effects on Fructose Dehydration to 5-Hydroxymethylfurfural in Biphasic Systems Saturated with Inorganic Salts

  • Yuriy Román-Leshkov
  • James A. DumesicEmail author
Original Paper


Furan derivatives, such as 5-hydroxymethylfurfural (HMF), obtained from acid-catalyzed dehydration of carbohydrates, can serve as renewable chemical platforms for the production of fuels and chemical intermediates. Addition of an inorganic salt to concentrated aqueous solutions of fructose (30 wt% fructose on salt free basis) in biphasic systems containing an organic extracting phase improves HMF yields by increasing the partitioning of HMF into the extracting phase, as measured by the partition coefficient, R, equal to the concentration of HMF in the organic phase normalized by the concentration in the aqueous phase. We have studied the impact of solvent choice on HMF yield using primary and secondary alcohols, ketones, and cyclic ethers in the C3–C6 range as extracting solvents in biphasic systems saturated with NaCl. Biphasic systems containing C4 solvents generated the highest HMF yields within each solvent class. Tetrahydrofuran demonstrated the best combination of high HMF selectivity (83%) and high extracting power (R = 7.1) at 423 K. The presence of NaCl provided the additional benefit of creating biphasic systems using solvents that are completely miscible with water in the absence of salt. We have also studied the impact of different salts on HMF yield in systems using 1-butanol as the extracting solvent. Na+ and K+ showed the best combination of extracting power and HMF selectivity of the monovalent and divalent chloride salts tested. Changing the anion of the salt from Cl to Br resulted in R-values and HMF selectivity values resembling the non-salt system, while changing to the SO4 2− divalent species generated a high R-value (8.1), but a low HMF selectivity value (71%).


HMF Solvent Acid catalysis Biphasic Fructose 



This work was supported by the National Science Foundation Chemical and Transport Systems Division of the Directorate for Engineering, the Great Lakes Bioenergy Research Center (GLBRC), and Virent Energy Systems.


  1. 1.
    Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) Chem Sus Chem 1:283Google Scholar
  2. 2.
    Bicker M, Kaiser D, Ott L, Vogel H (2005) J Supercrit Fluids 36:118CrossRefGoogle Scholar
  3. 3.
    Werpy T, Petersen G (2004) Top Value Added Chemicals from Biomass: Vol 1—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Tech. Report No. Report No. NREL/TP-510-35523 (National Renewable Energy Laboratory)Google Scholar
  4. 4.
    Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446CrossRefGoogle Scholar
  5. 5.
    Gandini A, Belgacem MN (1997) Prog Polym Sci 22:1203CrossRefGoogle Scholar
  6. 6.
    Chaabouni A et al (1999) Journal de la Societe Chimique de Tunisie 4:547Google Scholar
  7. 7.
    Rapp KM (1987) US Patent, 4,740,605 Google Scholar
  8. 8.
    Brown DW, Floyd AJ, Kinsman RG, Roshan-Ali Y (1982) J Chem Technol Biotechnol 32:920Google Scholar
  9. 9.
    Musau RM, Munavu RM (1987) Biomass 13:67CrossRefGoogle Scholar
  10. 10.
    Nakamura Y, Morikawa S (1980) Bull Chem Soc Jpn 53:3705CrossRefGoogle Scholar
  11. 11.
    Szmant HH, Chundury DD (1981) J Chem Technol and Biotechnol 31:135Google Scholar
  12. 12.
    van Dam HE, Kieboom APG, van Bekkum H (1986) Starch 38:95CrossRefGoogle Scholar
  13. 13.
    Kuster BFM, van der Steen HJC (1977) Starch 29:99CrossRefGoogle Scholar
  14. 14.
    Peniston QP (1956) U.S. Patent 2,750,394 Google Scholar
  15. 15.
    El Hajj T, MasRoua A, Martin JC, Descotes G (1987) Bulletin de la Societe Chimique de France 5:855Google Scholar
  16. 16.
    Rigal L, Gaset A, Gorrichon J-P (1981) Ind Eng Chem Prod Res Dev 20:719CrossRefGoogle Scholar
  17. 17.
    Moreau C et al (1996) Appl Catal A Gen 145:211CrossRefGoogle Scholar
  18. 18.
    Rivalier P, Duhamet J, Moreau C, Durand R (1995) Catal Today 24:165CrossRefGoogle Scholar
  19. 19.
    Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11CrossRefGoogle Scholar
  20. 20.
    Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Nature 447:982CrossRefGoogle Scholar
  21. 21.
    Gruter G, Maria JDF (2007) Avantis International, European Patent Office EP20060075564Google Scholar
  22. 22.
    Jain MK and Datta R (1991) US Patent Office 5063156Google Scholar
  23. 23.
    Krouwel PG, Groot WJ, Kossen NWF, van der Laan WFM (1983) Enzyme Microb Technol 5:46CrossRefGoogle Scholar
  24. 24.
    Eisen EO, Joffe J (1966) J Chem Eng Data 11:480CrossRefGoogle Scholar
  25. 25.
    Tan TC, Aravinth S (1999) Fluid Phase Equilib 163:243CrossRefGoogle Scholar
  26. 26.
    Treybal RE (1963) Liquid Extraction, 2nd edn. McGraw Hill, New YorkGoogle Scholar
  27. 27.
    Reber LA, McNabb WW, Lucasse WW (1942) J Phys Chem 46:500CrossRefGoogle Scholar
  28. 28.
    Kuster BFM, van der Baan HS (1977) Carbohydr Res 54:165CrossRefGoogle Scholar
  29. 29.
    Kuster BFM (1990) Starch 42:314CrossRefGoogle Scholar
  30. 30.
    Moreau C, Finiels A, Vanoye L (2006) J Mol Catal A Chem 253:165CrossRefGoogle Scholar
  31. 31.
    Gorgenyi M, Dewulf J, Van Langenhove H, Heberger K (2006) Chemosphere 65:802CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations