Topics in Catalysis

, 52:241 | Cite as

Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks

  • Torren R. Carlson
  • Geoffrey A. Tompsett
  • William C. Conner
  • George W. Huber
Original Paper

Abstract

The conversion of biomass compounds to aromatics by thermal decomposition in the presence of catalysts was investigated using a pyroprobe analytical pyrolyzer. The first step in this process is the thermal decomposition of the biomass to smaller oxygenates that then enter the catalysts pores where they are converted to CO, CO2, water, coke and volatile aromatics. The desired reaction is the conversion of biomass into aromatics, CO2 and water with the undesired products being coke and water. Both the reaction conditions and catalyst properties are critical in maximizing the desired product selectivity. High heating rates and high catalyst to feed ratio favor aromatic production over coke formation. Aromatics with carbon yields in excess of 30 molar carbon% were obtained from glucose, xylitol, cellobiose, and cellulose with ZSM-5 (Si/Al = 60) at the optimal reactor conditions. The aromatic yield for all the products was similar suggesting that all of these biomass-derived oxygenates go through a common intermediate. At lower catalyst to feed ratios volatile oxygenates are formed including furan type compounds, acetic acid and hydroxyacetaldehyde. The product selectivity is dependent on both the size of the catalyst pores and the nature of the active sites. Five catalysts were tested including ZSM-5, silicalite, beta, Y-zeolite and silica–alumina. ZSM-5 had the highest aromatic yields (30% carbon yield) and the least amount of coke.

Keywords

Catalytic pyrolysis Aromatics Zeolite catalysts 

Notes

Acknowledgements

The authors would like to thank the National Science Foundation (Grant # 747996) and John and Elizabeth Armstrong for the generous funding. We would also like to acknowledge Jungho Jae and Phil Westmoreland for help with the pyroprobe.

Supplementary material

11244_2008_9160_MOESM1_ESM.doc (134 kb)
(DOC 134 kb)

References

  1. 1.
    Lynd LR, Wyman CE, Gerngross TU (1999) Biotechnol Progress 15:777CrossRefGoogle Scholar
  2. 2.
    Wyman CE (1999) Annl Rev Energy Environ 24:189Google Scholar
  3. 3.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959CrossRefGoogle Scholar
  4. 4.
    Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San DiegoGoogle Scholar
  5. 5.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044CrossRefGoogle Scholar
  6. 6.
    Huber GW, Dumesic JA (2006) Catal Today 111:119CrossRefGoogle Scholar
  7. 7.
    Dauenhauer PJ, Dreyer BJ, Degenstein NJ, Schmidt LD (2007) Angew Chem Int Edit 46:5864CrossRefGoogle Scholar
  8. 8.
    Bridgwater AV (2003) Chem Eng J 91:87CrossRefGoogle Scholar
  9. 9.
    Goyal HB, Seal D, Saxena RC (2007) Renew Sustain Energy Rev 12:504CrossRefGoogle Scholar
  10. 10.
    Demirbas A (2007) Energy Sour A Recov Utilizat Environ Effect 29:753CrossRefGoogle Scholar
  11. 11.
    Bridgwater AV (1992) Energy Fuel 6:113CrossRefGoogle Scholar
  12. 12.
    Wright M, Brown RC (2007) Biofuels Bioprod Bioref 1:191CrossRefGoogle Scholar
  13. 13.
    Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuel 20:848CrossRefGoogle Scholar
  14. 14.
    Adam J, Antonakou E, Lappas A, Stoecker M, Nilsen MH, Bouzga A, Hustad JE, Oye G (2006) Microporous Mesoporous Mater 96:93CrossRefGoogle Scholar
  15. 15.
    Horne PA, Williams PT (1996) Fuel 75:1043CrossRefGoogle Scholar
  16. 16.
    Nokkosmaki MI, Kuoppala ET, Leppamaki EA, Krause AOI (2000) J Anal Appl Pyrol 55:119CrossRefGoogle Scholar
  17. 17.
    Carlson TR, Vispute TP, Huber GW (2008) ChemSusChem 1:397CrossRefGoogle Scholar
  18. 18.
    Chen NY, Degnan TF Jr, Koenig LR (1986) Chemtech 16:506Google Scholar
  19. 19.
    Corma AH, Huber GW, Sauvanaud L, O’Connor P (2007) J Catal 247:307CrossRefGoogle Scholar
  20. 20.
    Olazar M, Aguado R, Bilbao J, Barona A (2000) AIChE J 46:1025CrossRefGoogle Scholar
  21. 21.
    Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Fuel 81:2087CrossRefGoogle Scholar
  22. 22.
    Millini R, Frigerio F, Bellussi G, Pazzuconi G, Perego C, Pollesel P, Romano U (2003) J Catal 217:298Google Scholar
  23. 23.
    Cook M, Conner WC (1999) In: Proceedings of the international zeolite conference, 12th, Baltimore, July 5–10, 1998, 409 pGoogle Scholar
  24. 24.
    Lourvanij K, Rorrer GL (1997) J Chem Technol Biotechnol 69:35CrossRefGoogle Scholar
  25. 25.
    Evans RJ, Milne TA (1987) Energy Fuel 1:123CrossRefGoogle Scholar
  26. 26.
    Fremont G (1992) J Catal 9:1CrossRefGoogle Scholar
  27. 27.
    Xia QH, Shen SC, Song J, Kawi S, Hidajat K (2003) J Catal 219:74CrossRefGoogle Scholar
  28. 28.
    Horne PA, Nugranad N, Williams PT (1995) J Anal Appl Pyrol 34:87CrossRefGoogle Scholar
  29. 29.
    Weisz PB, Haag WO, Rodewald PG (1979) Science 206:57CrossRefGoogle Scholar
  30. 30.
    Dao LH (1986) Institut National de la Recherche Scientifique, “Converting biomass into hydrocarbons”, Canada, Patent # 83-443162, 10 ppGoogle Scholar
  31. 31.
    Dao LH, Haniff M, Houle A, Lamothe D (1987) Preprints Paper (American Chemical Society, Division of Fuel Chemistry) 32:308Google Scholar
  32. 32.
    Hanniff MI, Dao LH (1987) Energy Biomass Wastes 10:831Google Scholar
  33. 33.
    Dao LH, Haniff M, Houle A, Lamothe D (1988) ACS Symp Ser 376:328CrossRefGoogle Scholar
  34. 34.
    Hanniff MI, Dao LH (1988) Appl Catal 39:33CrossRefGoogle Scholar
  35. 35.
    Samolada MC, Baldauf W, Vasalos IA (1998) Fuel 77:1667CrossRefGoogle Scholar
  36. 36.
    Fabbri D, Torri C, Baravelli V (2007) J Anal Appl Pyrol 80:24CrossRefGoogle Scholar
  37. 37.
    Pattiya A, Titiloye JO, Bridgwater AV (2008) J Anal Appl Pyrol 81:72CrossRefGoogle Scholar
  38. 38.
    Aho A, Kumar N, Eranen K, Salmi T, Hupa M, Murzin DY (2007) Process Saf Environ Protect 85:473CrossRefGoogle Scholar
  39. 39.
    Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas AA, Triantafyllidis KS (2007) Chem Eng J 134:51CrossRefGoogle Scholar
  40. 40.
    Park HJ, Dong J-I, Jeon J-K, Yoo K-S, Yim J-H, Sohn JM, Park Y-K (2007) J Industr Eng Chem 13:182Google Scholar
  41. 41.
    Alferov VV, Misnikov OS, Kislitsa OV, Sul’man EM, Murzin DY, Kumar N (2006) Kataliz v Promyshlennosti 6:42Google Scholar
  42. 42.
    Sulman EM, Alferov VV, Kosivtsov YY, Sidorov AI, Misnikov OS, Afanasiev AE, Kumar N, Kubicka D, Agullo J, Salmi T, Murzin DY (2007) Chem Eng J 134:162CrossRefGoogle Scholar
  43. 43.
    Ernst S, Hartmann M, Sauerbeck S, Bongers T (2000) App Catal A 200:117CrossRefGoogle Scholar
  44. 44.
    Commerce USCHCoEa (ed) (1990) U.S. G.P.OGoogle Scholar
  45. 45.
    Kirk-Othmer Encyclopedia of Chemical Technology (2004) Wiley-Interscience, Hoboken, NJGoogle Scholar
  46. 46.
    Fuscella W (2002) Kirk-Othmer Encyclopedia of Chemical Technology Online Edition, vol 3. John Wiley & Sons, Inc., p 596Google Scholar
  47. 47.
    Yaws CL (1999) Chemical properties handbook. McGraw Hill, New YorkGoogle Scholar
  48. 48.
    American Society of Testing Materials (ASTM) (1958) Knocking characteristics of pure hydrocarbons (Research Project 45), Special technical publication no. 225, Philadelphia, PAGoogle Scholar
  49. 49.
    Refer to website (2006) http://www.epa.gov/ttn/chief/ap42/cho7/. In: Environment Protection Agency report, vol AP, 42 5th edition
  50. 50.
    Baysar A, Johnson KJ, Kuester JL (1988) Res Thermochem Biomass Convers [International Conference on Research in Thermochemical Biomass Conversion, Phoenix, AZ] 680:680Google Scholar
  51. 51.
    Krieger-Brockett B (1994) Res Chem Intermed 20:39CrossRefGoogle Scholar
  52. 52.
    Yoshizawa Y, Fujita T, Iwamatsu N (1996) Nippon Kikai Gakkai Ronbunshu B-hen 62:2874Google Scholar
  53. 53.
    Miura M, Kaga H, Yoshida T, Ando K (2001) J Wood Sci 47:502CrossRefGoogle Scholar
  54. 54.
    Sarotti AM, Spanevello RA, Suarez AG (2007) Green Chem 9:1137CrossRefGoogle Scholar
  55. 55.
    Graef M, Allan GG, Krieger BB (1979) Preprints (American Chemical Society, Division of Petroleum Chemistry) 24:432Google Scholar
  56. 56.
    Yu F, Hennessy KW, Deng S, Chen P, Ruan R (2007) In: Abstracts of papers, 234th ACS National Meeting, Boston, MA, United States, August 19–23. IECGoogle Scholar
  57. 57.
    Yu F, Deng S, Chen P, Liu Y, Wang Y, Olsen A, Kittelson D, Ruan R (2007) Appl Biochem Biotechnol 136–140:957CrossRefGoogle Scholar
  58. 58.
  59. 59.
    Corma AH, George W, Laurent S, O’Connor P (2007) J Catal 247:307Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Torren R. Carlson
    • 1
  • Geoffrey A. Tompsett
    • 1
  • William C. Conner
    • 1
  • George W. Huber
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations