Topics in Catalysis

, Volume 52, Issue 1–2, pp 12–26 | Cite as

Synthesis of Ordered Mesoporous Carbon Materials with Semi-Graphitized Walls via Direct In-situ Silica-Confined Thermal Decomposition of CH4 and Their Hydrogen Storage Properties

  • Zhangxiong Wu
  • Yunxia Yang
  • Dong Gu
  • Yunpu Zhai
  • Dan Feng
  • Qiang Li
  • Bo Tu
  • Paul A. Webley
  • Dong Yuan Zhao
Original Paper


Ordered mesoporous carbons with semi-graphitized walls (OMCs-SGW) were successfully obtained by in situ silica-confined thermal decomposition of methane at low temperatures (800–1000 °C). This novel method, adopting ordered mesoporous silicas (OMSs) as hard templates, impregnating OMSs with small amounts of group VIII metal (Fe, Co, Ni) nitrates as catalysts, combining pore infiltration and carbonization/graphitization processes into a single step, provides an efficient way for the synthesis of OMCs-SGW. Methane, a special carbon precursor with small molecular size, is adopted because it allows complete penetration, and full carbon deposition inside the mesopores and is an easy graphitization process at low temperature assisted by catalysts. Two mesoporous silica materials, SBA-15 with hexagonal structure (p6m) and KIT-6 with cubic bicontinuous structure (Ia3d), were used as hard templates. SAXS patterns and TEM results show that the obtained carbon materials are faithfully replicated from the mesostructures of silica templates. Their pore walls are semi-graphitized and little structural shrinkage and negligible micropores are observed. The textural, structural properties and degree of graphitization of the OMCs-SGW can be conveniently tuned by controlling the temperature, namely, higher temperatures (e.g. 1000 °C) lead to products with more ordered and graphitized frameworks, but lower surface areas and pore volumes (about 390 m2/g and 0.45 cm3/g), while lower temperature (800 °C) results in products with less ordered and graphitized structures, but very high surface areas and pore volumes (up to 1200 m2/g and 2.08 cm3/g). OMCs-SGW can also be synthesized without catalysts. They have higher surface areas and pore volumes but much lower graphitized structures than the counterparts synthesized with catalysts. These OMCs-SGW show good hydrogen uptake capabilities (up to ~2 wt% at 10 bar and 77 K).


Mesoporous materials Synthesis Templating Carbon Silica Hydrogen storage 


  1. 1.
    Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743CrossRefGoogle Scholar
  2. 2.
    Hartmann M, Vinu A, Chandrasekar G (2005) Chem Mater 17:829CrossRefGoogle Scholar
  3. 3.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377CrossRefGoogle Scholar
  4. 4.
    Yang Z, Xia Y, Mokaya R (2004) Adv Mater 16:727CrossRefGoogle Scholar
  5. 5.
    Kang M, Yi SH, Lee HI, Yie JE, Kim JM (2002) Chem Commun 1944Google Scholar
  6. 6.
    Li ZJ, Yan WF, Dai S (2005) Langmuir 21:11999CrossRefGoogle Scholar
  7. 7.
    Li ZJ, Dai S (2005) Chem Mater 17:1717CrossRefGoogle Scholar
  8. 8.
    Che SN, Garcia-Bennett AE, Liu XY, Hodgkins RP, Wright PA, Zhao DY, Terasaki O, Tatsumi T (2003) Angew Chem Int Ed 42:3930CrossRefGoogle Scholar
  9. 9.
    Kleitz F, Choi SH, Ryoo R (2003) Chem Commun 2136Google Scholar
  10. 10.
    Kim TW, Kleitz F, Paul B, Ryoo R (2005) J Am Chem Soc 127:7601CrossRefGoogle Scholar
  11. 11.
    Fan J, Yu CZ, Gao T, Lei J, Tian BZ, Wang LM, Luo Q, Tu B, Zhou WZ, Zhao DY (2003) Angew Chem Int Ed 42:3146CrossRefGoogle Scholar
  12. 12.
    Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 13:677CrossRefGoogle Scholar
  13. 13.
    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712CrossRefGoogle Scholar
  14. 14.
    Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169CrossRefGoogle Scholar
  15. 15.
    Kaneda M, Tsubakiyama T, Carlsson A, Sakamoto Y, Ohsuna T, Terasaki O, Joo SH, Ryoo R (2002) J Phys Chem B 106:1256CrossRefGoogle Scholar
  16. 16.
    Vix-Guterl C, Boulard S, Parmentier J, Werckmann J, Patarin J (2002) Chem Lett 1062Google Scholar
  17. 17.
    Kim JY, Yoon SB, Yu JS (2003) Chem Mater 15:1932CrossRefGoogle Scholar
  18. 18.
    Zhang WH, Liang CH, Sun HJ, Shen ZQ, Guan YJ, Ying PL, Li C (2002) Adv Mater 14:1776CrossRefGoogle Scholar
  19. 19.
    Xia YD, Mokaya R (2004) Adv Mater 16:886CrossRefGoogle Scholar
  20. 20.
    Liang CD, Dai S (2006) J Am Chem Soc 128(16):5316CrossRefGoogle Scholar
  21. 21.
    Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Chem Commun 2125Google Scholar
  22. 22.
    Zhang FQ, Meng Y, Gu D, Yan Y, Yu CZ, Tu B, Zhao DY (2005) J Am Chem Soc 127:13508CrossRefGoogle Scholar
  23. 23.
    Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Angew Chem Int Ed 44:7053CrossRefGoogle Scholar
  24. 24.
    Meng Y, Gu D, Zhang FQ, Shi YF, Cheng L, Feng D, Wu ZX, Chen ZX, Wan Y, Stein A, Zhao DY (2006) Chem Mater 18:4447CrossRefGoogle Scholar
  25. 25.
    Huang Y, Cai HQ, Yu T, Zhang FQ, Zhang F, Meng Y, Gu D, Wan Y, Sun XL, Tu B, Zhao DY (2007) Angew Chem Int Ed 46:1089–1093CrossRefGoogle Scholar
  26. 26.
    Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Nature 388:756Google Scholar
  27. 27.
    Saito Y, Matsumoto T (1998) Nature 392:237CrossRefGoogle Scholar
  28. 28.
    Choi M, Altman IS, Kim YJ, Pikhitsa PV, Lee S, Park GS, Jeong T, Yoo JB (2004) Adv Mater 16:1721CrossRefGoogle Scholar
  29. 29.
    Fuertes AB, Alvarez S (2004) Carbon 42:3049CrossRefGoogle Scholar
  30. 30.
    Kim TW, Park IS, Ryoo R (2003) Angew Chem Int Ed 42:4375CrossRefGoogle Scholar
  31. 31.
    Kim SS, Pauly TR, Pinnavaia TJ (2000) Chem Commun 1661Google Scholar
  32. 32.
    Yang HF, Yan Y, Liu Y, Zhang FQ, Zhang RY, Meng Y, Li M, Xie SH, Tu B, Zhao DY (2004) J Phys Chem B 108:17320CrossRefGoogle Scholar
  33. 33.
    Xia YD, Mokaya R (2004) Adv Mater 16:1553CrossRefGoogle Scholar
  34. 34.
    Xia YD, Mokaya R (2005) Chem Mater 17:1553CrossRefGoogle Scholar
  35. 35.
    Zhao DY, Huo QS, Stuky GD, Feng J, Melosh N, Fredrickson GH (1998) Science 279:548CrossRefGoogle Scholar
  36. 36.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024CrossRefGoogle Scholar
  37. 37.
    Kleitz F, Choi S, Ryoo R (2003) Chem Commun 17:2136CrossRefGoogle Scholar
  38. 38.
    Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y (2000) Carbon 38:305CrossRefGoogle Scholar
  39. 39.
    Dumont M, Chollon G, Dourges MA, Pailler R, Bourrat X, Naslain R, Bruneel JL, Couzi M (2002) Carbon 40:1475CrossRefGoogle Scholar
  40. 40.
    Cassiers K, Linssen T, Mathieu M, Benjelloun M, Schrijnemakers K, Van Der Voort P, Cool P, Vansant EF (2002) Chem Mater 14:2317CrossRefGoogle Scholar
  41. 41.
    Terres E, Panella B, Hayashi T, Kim YA, Endo M, Dominguez JM, Hirscher M, Terrones H, Terrones M (2005) Chem Phys Lett 403:363CrossRefGoogle Scholar
  42. 42.
    Yang Z, Xia Y, Sun X, Mokaya R (2006) J Phys Chem B 110:18424CrossRefGoogle Scholar
  43. 43.
    Yang Z, Xia Y, Mokaya R (2007) J Am Chem Soc 129:1673CrossRefGoogle Scholar
  44. 44.
    Pang J, Hampsey JE, Wu Z, Hu Q, Lu Y (2004) Appl Phys Lett 85:4887CrossRefGoogle Scholar
  45. 45.
    Xia K, Gao Q, Wu C, Song S, Ruan M (2007) Carbon 45:1989CrossRefGoogle Scholar
  46. 46.
    Wang Y, Korai Y, Mochida I, Nagayama K, Hatano H, Fukuda N (2001) Carbon 39:1627CrossRefGoogle Scholar
  47. 47.
    Liang C, Li Z, Dai S (2008) Angew Chem Int Ed 47:3696CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zhangxiong Wu
    • 1
    • 2
  • Yunxia Yang
    • 2
  • Dong Gu
    • 1
  • Yunpu Zhai
    • 1
  • Dan Feng
    • 1
  • Qiang Li
    • 1
  • Bo Tu
    • 1
  • Paul A. Webley
    • 2
  • Dong Yuan Zhao
    • 1
    • 2
  1. 1.Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced MaterialsFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations