Topics in Catalysis

, 51:22 | Cite as

Oxidative Steam Reforming of Ethanol over Ni–Cu/SiO2, Rh/Al2O3 and Ir/CeO2: Effect of Metal and Support on Reaction Mechanism

  • Ouardia Akdim
  • Weijie Cai
  • Vanessa Fierro
  • Hélène Provendier
  • Andre van Veen
  • Wenjie Shen
  • Claude MirodatosEmail author
Original Paper


The effect of metal and support on ethanol oxidative steam reforming (OSR) has been investigated over a series of stable and active catalytic systems with noble (Rh or Ir) and non noble metal (Ni–Cu) supported over neutral (SiO2), amphoteric (Al2O3) or redox (CeO2) supports. Ethanol decomposition and oxidative steam reforming was investigated by in situ diffuse reflectance infrared spectroscopy under temperature-programmed desorption and surface reaction conditions. Different mechanisms were established for these systems, from the initial steps of ethanol activation to the final equilibration of the decomposition products CO, CO2, H2 and H2O. Various intermediates such as formates, acetates and/or carbonates were found to play different roles depending on the catalyst composition. The stability and activity of the investigated systems were finally assigned to specific features of these mechanisms.


Ethanol oxidative steam reforming Ni–Cu/SiO2 Rh/Al2O3 Ir/CeO2 DRIFT TPD TPR study 


  1. 1.
    Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CS (2005) Appl Catal B 55:287CrossRefGoogle Scholar
  2. 2.
    Urasaki K, Tokunaga K, Sekine Y, Matsukata M, Kikuchi E (2008) Catal Commun 9:600CrossRefGoogle Scholar
  3. 3.
    Alejo L, Lago R, Pena MA, Fierro JLG (1997) Appl Catal A 162:281CrossRefGoogle Scholar
  4. 4.
    Velu S, Suzuki K, Osaki T (2000) Catal Lett 69:43CrossRefGoogle Scholar
  5. 5.
    Reitz TL, Ahmed S, krumpelt M, Kumar R, Kung HH (2000) J Mol Catal A 162:275CrossRefGoogle Scholar
  6. 6.
    Fatsikostas AN, Kondarides DI, Verykios XE (2002) Catal Today 75:145CrossRefGoogle Scholar
  7. 7.
    Llorca J, Homs N, Sales J (2002) J Catal 209:306CrossRefGoogle Scholar
  8. 8.
    Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) J Power Sources 134:27CrossRefGoogle Scholar
  9. 9.
    Marino F, Boveri M, Baronetti G, Laborde M (2001) Int J Hydrogen Energy 26:665CrossRefGoogle Scholar
  10. 10.
    Breen JP, Burch R, Coleman HM (2002) Appl Catal B 39:65CrossRefGoogle Scholar
  11. 11.
    Liguras DK, Kondarides DI, Verykios XE (2003) Appl Catal B 43:345CrossRefGoogle Scholar
  12. 12.
    Navarro RM, Álvarez-Galván MC, Cruz Sánchez-Sánchez M, Rosa F, Fierro JLG (2005) Appl Catal B 55:229CrossRefGoogle Scholar
  13. 13.
    Batista M, Santos RS, Assaf EM, Assaf J, Ticianelli EA (2003) J Power Sources 124:99CrossRefGoogle Scholar
  14. 14.
    Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S (2004) Catal Commun 5:611CrossRefGoogle Scholar
  15. 15.
    Fierro V, Akdim O, Provendier H, Mirodatos C (2005) J Power Sources 145:659CrossRefGoogle Scholar
  16. 16.
    Kugai J, Subramani V, Song C, Engelhard MH, Chin Y (2006) J Catal 238:430CrossRefGoogle Scholar
  17. 17.
    Fierro V, Akdim O, Mirodatos C (2003) Green Chem 5:20CrossRefGoogle Scholar
  18. 18.
    Cai W, Zhang B, Li Y, Xu Y, Shen W (2007) Catal Commun 8:1588CrossRefGoogle Scholar
  19. 19.
    Biswas P, Kunzu D (2008) Chem Eng J 136:41CrossRefGoogle Scholar
  20. 20.
    Fatsikostas AN, Verykios XE (2004) J Catal 225:439CrossRefGoogle Scholar
  21. 21.
    Liguras DK, Goundani K, Verykios XE (2004) J Power Sources 130:30CrossRefGoogle Scholar
  22. 22.
    Akdim O (2004) PhD thesis, Lyon1 University, # 298Google Scholar
  23. 23.
    Coenen JWE (1979) Stud Surf Sci Catal 3:89CrossRefGoogle Scholar
  24. 24.
    Rasko J, Hancz A, Erdohelyi A (2004) Appl Catal A 269:13CrossRefGoogle Scholar
  25. 25.
    Mattos LV, Noronha FB (2005) J Catal 233:453CrossRefGoogle Scholar
  26. 26.
    Sheng P-Y, Yee A, Bowmaker GA, Idriss H (2002) J Catal 208:393CrossRefGoogle Scholar
  27. 27.
    Rasko J, domok M, Baan K, Erdohelyi A (2006) Appl Catal A 299:202CrossRefGoogle Scholar
  28. 28.
    Yee A, Morrison SJ, Idriss H (2000) J Catal 191:30CrossRefGoogle Scholar
  29. 29.
    Socrates G (1980) Infrared characteristic group frequencies. Willey, ChichesterGoogle Scholar
  30. 30.
    Greenler RG (1962) J Chem Phys 37:2094CrossRefGoogle Scholar
  31. 31.
    Hasan MA, Zaki MI, Pasupulety L (2003) Appl Catal A 243:81CrossRefGoogle Scholar
  32. 32.
    Vigier F, Rousseau S, Coutanceau C, Leger J-M, Lamy C (2006) Top Catal 40:111CrossRefGoogle Scholar
  33. 33.
    Liao LF, Wu WC, Chen CY, Lin JJ (2001) J Phys Chem B 105:7678CrossRefGoogle Scholar
  34. 34.
    Chang CC, Wu WC, Huang MC, Huang LC, Lin JJ (1999) J Catal 185:423CrossRefGoogle Scholar
  35. 35.
    Henderson MA (1997) J Phys Chem B 101:221CrossRefGoogle Scholar
  36. 36.
    Dilara PA, Voks JM (1993) J Phys Chem 97:12919CrossRefGoogle Scholar
  37. 37.
    Baldanza MAS, de Mello LF, Vannice A, Noronha FB, Schmal M (2000) J Catal 192:64CrossRefGoogle Scholar
  38. 38.
    Cordi EM, Falconer JL (1996) J Catal 162:104CrossRefGoogle Scholar
  39. 39.
    de Mello LF, Noronha FB, Schmal M (2003) J Catal 220:358CrossRefGoogle Scholar
  40. 40.
    Jacobs G, Chenu E, Patterson PM (2004) Appl Catal A 269:63CrossRefGoogle Scholar
  41. 41.
    Yee A, Morrison SJ, Idriss H (2000) Catal Today 63:327CrossRefGoogle Scholar
  42. 42.
    Agnelli M, Mirodatos C (2000) J Catal 192:2061CrossRefGoogle Scholar
  43. 43.
    Golay S, Doepper R, Renken A (1998) Appl Catal A 172:97CrossRefGoogle Scholar
  44. 44.
    Menacherry PV, Haller GL (1998) J Catal 177:175CrossRefGoogle Scholar
  45. 45.
    Bischoff H, Jaeger NI, Schulz-Ekloff G, Kubelkova L (1993) J Mol Catal 80:95CrossRefGoogle Scholar
  46. 46.
    Primet M (1984) J Catal 88:273CrossRefGoogle Scholar
  47. 47.
    Dai CH, Worley SD (1988) Langmuir 4:326CrossRefGoogle Scholar
  48. 48.
    Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, Shen WJ, Imamura S (2005) Appl Catal A 279:273CrossRefGoogle Scholar
  49. 49.
    Pestman R, Koster RM, van Duijne A, Pieterse JAZ, Ponec V (1997) J Catal 168:265CrossRefGoogle Scholar
  50. 50.
    Mattos LV, Noronha FB (2005) J Power Sources 145:10CrossRefGoogle Scholar
  51. 51.
    Yao MH, Baird RJ, Kunz FW, Hoost TE (1997) J Catal 166:67CrossRefGoogle Scholar
  52. 52.
    Kratochwil T, Wittmann M, Kuppers J (1993) J Elect Spect Relat Phen 64–65:609CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ouardia Akdim
    • 1
  • Weijie Cai
    • 1
    • 2
  • Vanessa Fierro
    • 1
    • 3
  • Hélène Provendier
    • 1
  • Andre van Veen
    • 1
  • Wenjie Shen
    • 2
  • Claude Mirodatos
    • 1
    Email author
  1. 1.Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Université Claude Bernard Lyon1Villeurbanne CedexFrance
  2. 2.State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  3. 3.Laboratoire de Chimie du Solide MinéralUniversité Henri Poincaré-Nancy Université, UMR-CNRS 7555Vandoeuvre-les-NancyFrance

Personalised recommendations