Topics in Catalysis

, 50:82 | Cite as

Multicomponent Oxides in Selective Oxidation of Alkanes Theoretical Acidity versus Selectivity

Original Paper

Abstract

Semi-empirical relationships between the ‘optical basicity’ Λ (so-called after Duffy) of solid oxides and the ‘thermodynamic’ selectivity in mild and total oxidation of hydrocarbons have recently been set up. They can be used to determine the optimum acidity of a solid catalyst or to account for its observed selectivity in a given reaction. The oxidic MxOz catalysts were ranked by means of the electron-donor power of oxygen which is represented by the optical basicity Λ. The difference of ionization potential I of molecules when the reactant becomes the product, which represents the variation of electron-donor power during the reaction, was used to rank reactions. Plotting ΔI against Λ for each ‘reaction/selective catalyst’ couple results in straight lines, the equation of which depends on the chemical nature of reactant (alkane and alkyl-aromatics, alkenes and aromatics, alcohols) and on the deepness of oxidation (ammoxidation, mild oxidation, total oxidation). The correlations are used to discuss the behaviour of V- and Mo-based, simple and multicomponent oxide catalysts, in the mild oxidation of C2 and C3 hydrocarbons.

Keywords

Optical basicity Acidity/basicity scale of solid oxides Electron donor/acceptor power Selectivity in oxidation Predictive relationships 

References

  1. 1.
    Papers in Solid state chemistry in catalysis, Grasselli RK, Brazdil JF (eds). ACS Symposium Series, 279 (1985)Google Scholar
  2. 2.
    Duffy JA (1990) Bonding, energy levels and bands in inorganic solids. Longman Scientific & Technical, New York, 249 ppGoogle Scholar
  3. 3.
    Duffy JA (1993) Geochim Cosmochim Acta 57:3961CrossRefGoogle Scholar
  4. 4.
    Duffy JA, Ingram MD (1971) JACS 24:6448CrossRefGoogle Scholar
  5. 5.
    Dent-Glasser LS, Duffy JA (1987) J Chem Soc Dalton Trans 20:2323CrossRefGoogle Scholar
  6. 6.
    Kamitsos EI, Yiannopoulos YD, Duffy JA (2002) J Phys Chem B 106:8988CrossRefGoogle Scholar
  7. 7.
    Duffy JA (2006) J Phys Chem A 110:13245CrossRefGoogle Scholar
  8. 8.
    Duffy JA (2005) Phys Chem Glasses 46:1Google Scholar
  9. 9.
    Dimitrov V, Sakka S (1996) J Appl Phys 79:1736CrossRefGoogle Scholar
  10. 10.
    Dimitrov V, Komatsu T (2002) J Sol State Chem 163:100; ibid (2005) 178:831Google Scholar
  11. 11.
    Lebouteiller A, Courtine P (1998) J Solid State Chem 137:94CrossRefGoogle Scholar
  12. 12.
    Portier J, Campet G, Etourneau J, Shastry MCR, Tanguy B (1994) J Alloys Comp 209:59CrossRefGoogle Scholar
  13. 13.
    Moriceau P, Lebouteiller A, Bordes E, Courtine P (1999) Phys Chem Chem Phys 1:5735CrossRefGoogle Scholar
  14. 14.
    Bordes-Richard E, Courtine P (2005) In: Fierro JLJ (ed) Metal oxides chemistry and applications. Marcel Dekker, pp 319–352Google Scholar
  15. 15.
    Moriceau P, Taouk B, Bordes E, Courtine P (2000) Catal Today 61:197CrossRefGoogle Scholar
  16. 16.
    Moriceau P, Taouk B, Bordes E, Courtine P (2000) Stud Surf Sci Catal 130B:1811Google Scholar
  17. 17.
    Lenglet M (1997) Trends Chem Phys 6:121Google Scholar
  18. 18.
    Lenglet M (2000) Mater Res Bull 35:531CrossRefGoogle Scholar
  19. 19.
    Grasselli RK, Suresh DD (1972) J Catal 25:273CrossRefGoogle Scholar
  20. 20.
    Sumitomo Chemicals (1995) JP 09 020 700-AGoogle Scholar
  21. 21.
    Roussel M, Bouchard M, Bordes-Richard E, Karim K, Al-Sayari S (2005) Catal Today 99:77CrossRefGoogle Scholar
  22. 22.
    Roussel M, Bouchard M, Bordes-Richard E, Karim K, Al-Sayari S (2006) Appl Catal A Gen 308:62CrossRefGoogle Scholar
  23. 23.
    Merzouki M, Bordes E, Taouk B, Monceaux L, Courtine P (1992) Stud Surf Sci Catal 72:81CrossRefGoogle Scholar
  24. 24.
    Tessier L, Bordes E, Gubelmann-Bonneau M (1995) Catal Today 24:335CrossRefGoogle Scholar
  25. 25.
    Bordes E, Tessier L, Gubelmann-Bonneau M (1995) Eur Pat Appl 11 ppGoogle Scholar
  26. 26.
    Heracleous E, Delimitis A, Nalbandian L, Lemonidou AA (2007) Appl Catal A Gen 325:220CrossRefGoogle Scholar
  27. 27.
    Bao Z, Kieffer R, Li W (2001) Catal Lett 73:133CrossRefGoogle Scholar
  28. 28.
    Seoane JL, Boutry P, Montarnal R (1980) J Catal 63:191, 202Google Scholar
  29. 29.
    Oshihara K, Nakamura Y, Sakuma M, Ueda W (2001) Catal Today 71:153CrossRefGoogle Scholar
  30. 30.
    Chen NF, Oshihara K, Ueda W (2001) Catal Today 64:121CrossRefGoogle Scholar
  31. 31.
    DeSanto P Jr, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe Jr AF, Toby BH, Vogt T, Krist Z (2003) 219:152Google Scholar
  32. 32.
    DeSanto P Jr, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF Jr, Toby BH, Vogt T (2003) Top Catal 23:23CrossRefGoogle Scholar
  33. 33.
    Baca M, Millet JM (2005) Appl Catal A Gen 279:67CrossRefGoogle Scholar
  34. 34.
    Millet JM, Baca M, Pigamo A, Vitry D, Ueda W, Dubois JL (2003) Appl Catal A Gen 244:359CrossRefGoogle Scholar
  35. 35.
    Watanabe N, Ueda W (2006) Ind Eng Chem Res 45:607CrossRefGoogle Scholar
  36. 36.
    Ueda W, Vitry D, Katou T (2005) Catal Today 99:43CrossRefGoogle Scholar
  37. 37.
    Tichý J (1997) Appl Catal A Gen 157:363CrossRefGoogle Scholar
  38. 38.
    Ballarini N, Cavani F, Cimini M, Trifirò F, Millet JMM, Cornaro U, Catani R (2006) J Catal 241:255CrossRefGoogle Scholar
  39. 39.
    Ballarini N, Berry FJ, Cavani F, Cimini M, Ren X, Tamoni D (2007) Catal Today 128:161CrossRefGoogle Scholar
  40. 40.
    Mazzocchia C, Aboumrad C, Diagne C, Tempesti E, Herrmann JM, Thomas G (1991) Catal Lett 10:181CrossRefGoogle Scholar
  41. 41.
    Lezla O, Bordes E, Courtine P, Hecquet G (1997) J Catal 170:346CrossRefGoogle Scholar
  42. 42.
    Grasselli RK, Burrington JD (1981) Adv Catal 30:133CrossRefGoogle Scholar
  43. 43.
    Grasselli RK (1985) Appl Catal 15:127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Unité de Catalyse et de Chimie du Solide, UMR CNRS-8181, USTL, Bât.C3, Cité ScientifiqueVilleneuve d’Ascq CedexFrance

Personalised recommendations