Topics in Catalysis

, Volume 50, Issue 1–4, pp 180–191 | Cite as

Characterization of K-Promoted Ru Catalysts for Ammonia Decomposition Discovered Using High-Throughput Experimentation

  • William Pyrz
  • Rohit Vijay
  • Jason Binz
  • Jochen Lauterbach
  • Douglas J. Buttrey
Original Paper


We obtain H2 from low temperature NH3 decomposition using a new hollandite (KRu4O8) catalyst supported on γ-Al2O3 discovered using high-throughput experimentation and advanced TEM/SEM characterization. Relative to the base Ru° catalyst, this new catalyst shows NH3 conversion enhancements of 30–50% at T = 350 °C and decomposition activity at temperatures decreased by 50–100 °C. TEM analysis over the lifetime of the catalyst shows multiple phases and morphologies suggesting that the KRu4O8 behaves either as a new low-temperature decomposition catalyst or as a precursor to the active catalyst.


NH3 decomposition KRu4O8 hollandite K-promoted Ru catalysts TEM SEM High-throughput experimentation 



We acknowledge many fruitful discussions with Elizabeth D’Addio, Hua Yang, and Professor Dion Vlachos. This work was supported by the U.S. Department of Energy, Grant #DE-FG02-06ER15795. WDP and DJB thank Chaoying Ni and Frank Kriss with the Keck Electron Microscopy Facility for EM assistance.


  1. 1.
    Thomas G, Parks G (2006) DOE Review 1Google Scholar
  2. 2.
    Yin SF, Xu BQ, Zhou XP, Au CT (2004) App Cat A: Gen 277:1CrossRefGoogle Scholar
  3. 3.
    Yin SF, Zhang QH, Xu BQ, Zhu WX, Ng CF, Au CT (2004) J Catal 224:384CrossRefGoogle Scholar
  4. 4.
    Boisen A, Dahl S, Nørskov JK, Christensen CH (2005) J Catal 230:309CrossRefGoogle Scholar
  5. 5.
    Arabczyk W, Zamlynny J (1999) Catal Lett 60:167CrossRefGoogle Scholar
  6. 6.
    Kowalczyk Z, Sentek J, Jodzis S, Mizera E, Goralski J, Paryjczak T, Diduszko R (1997) Catal Lett 45:65CrossRefGoogle Scholar
  7. 7.
    Guraya M, Sprenger S, Rarog-Pilecka W, Szmigiel D, Kowalczyk Z, Muhler M (2004) Appl Sur Sci 238:77CrossRefGoogle Scholar
  8. 8.
    Wang SJ, Yin SF, Li L, Xu BQ, Ng CF, Au CT (2004) Appl Catal B: Environ 52:287CrossRefGoogle Scholar
  9. 9.
    Aika K-i, Takano T, Murata S (1992) J Catal 136:126CrossRefGoogle Scholar
  10. 10.
    Forni L, Molinari D, Rossetti I, Pernicone N (1999) Appl Catal A: Gen 185:269CrossRefGoogle Scholar
  11. 11.
    Kowalczyk Z, Jodzis S, Raróg W, Zieliski J, Pielaszek J (1998) Appl Catal A: Gen 173:153CrossRefGoogle Scholar
  12. 12.
    Yin SF, Xu BQ, Wang SJ, Ng CF, Au CT (2006) Appl Catal A: Gen 301:202CrossRefGoogle Scholar
  13. 13.
    Raróg-Pilecka W, Szmigiel D, Kowalczyk Z, Jodzis S, Zielinski J (2003) J Catal 218:465CrossRefGoogle Scholar
  14. 14.
    Sørensen RZ, Nielson LJE, Jensen S, Hansen O, Johannessen T, Quaade U, Christensen CH (2005) Catal Commun 6:229CrossRefGoogle Scholar
  15. 15.
    Murata S, Aika K-i (1992) J Catal 136:110CrossRefGoogle Scholar
  16. 16.
    Murata S, Aika K-i (1992) J Catal 136:118CrossRefGoogle Scholar
  17. 17.
    Hendershot RJ, Rogers WB, Snively CM, Ogunnaike BA, Lauterbach J (2004) Catal Today 98:375CrossRefGoogle Scholar
  18. 18.
    Hendershot RJ, Lasko SS, Fellmann M-F, Oskarsdottir G, Delgass WN, Snively CM, Lauterbach J (2003) Appl Catal A: Gen 254:107CrossRefGoogle Scholar
  19. 19.
    Snively CM, Katzenberger S, Oskarsdottir G, Lauterbach J (1999) Optics Lett 24:1841CrossRefGoogle Scholar
  20. 20.
    Snively CM, Oskarsdottir G, Lauterbach J (2000) J Combin Chem 2:243CrossRefGoogle Scholar
  21. 21.
    Snively CM, Oskarsdottir G, Lauterbach J (2001) Angew Chem Int Ed 40:3028CrossRefGoogle Scholar
  22. 22.
    Snively CM, Oskarsdottir G, Lauterbach J (2001) Catal Today 67:357CrossRefGoogle Scholar
  23. 23.
    Snively CM, Lauterbach J (2002) Spectroscopy 17:26Google Scholar
  24. 24.
    Hendershot RJ, Fanson PT, Snively CM, Lauterbach J (2003) Angew Chem Int Ed 42:1152CrossRefGoogle Scholar
  25. 25.
    Hendershot RJ, Vijay R, Feist BJ, Snively CM, Lauterbach J (2005) Meas Sci Tech 16:302CrossRefGoogle Scholar
  26. 26.
    Wilhelm M, Hoppe R (1978) Z Anorg Allg Chem 438:90CrossRefGoogle Scholar
  27. 27.
    Szmigiel D, Rarog-Pilecka W, Miskiewicz E, Kaszkur Z, Kowalczyk Z (2004) Appl Catal A Gen 264:59CrossRefGoogle Scholar
  28. 28.
    Choudhary TV, Sivadinarayana C, Goodman DW (2001) Catal Lett 72:197CrossRefGoogle Scholar
  29. 29.
    Foo ML, Lee W-L, Siegrist T, Lawes G, Ramirez AP, Ong NP, Cava RJ (2004) Mater Res Bull 39:1663CrossRefGoogle Scholar
  30. 30.
    Carter ML (2004) Mater Res Bull 39:1075Google Scholar
  31. 31.
    Isobe M, Koishi S, Ueda Y (2007) J Magn Magn Mater 310:888CrossRefGoogle Scholar
  32. 32.
    Klimczuk T, Lee W-L, Zandbergen HW, Cava RJ (2004) Mater Res Bull 39:1671CrossRefGoogle Scholar
  33. 33.
    Mao ZQ, He T, Rosario MM, Nelson KD, Okuno D, Ueland B, Deac IG, Shiffer P, Liu Y, Cava RJ (2003) Phys Rev Lett 90:186601CrossRefGoogle Scholar
  34. 34.
    Marimuthu KM, Varadaraju UV (2006) Mater Chem Phys 96:22CrossRefGoogle Scholar
  35. 35.
    Tamada O, Yamamoto N, Mori T, Endo T (1996) J Solid State Chem 126:1CrossRefGoogle Scholar
  36. 36.
    Waki T, Morimoto Y, Kato H, Kato M, Yoshimura K (2003) Physica B Condens Matter 329:938CrossRefGoogle Scholar
  37. 37.
    Nistor LC, Tendeloo GV, Amelinckx S (1994) J Solid State Chem 109:152CrossRefGoogle Scholar
  38. 38.
    Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Nørskov JK (1999) Phys Rev Lett 83:1814CrossRefGoogle Scholar
  39. 39.
    Hellman A, Honkala K, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Chirstensen CH, Nørskov JK (2006) Surf Sci 600:4264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • William Pyrz
    • 1
  • Rohit Vijay
    • 1
  • Jason Binz
    • 1
  • Jochen Lauterbach
    • 1
  • Douglas J. Buttrey
    • 1
  1. 1.Department of Chemical Engineering, Center for Catalytic Science and TechnologyUniversity of DelawareNewarkUSA

Personalised recommendations