Topics in Catalysis

, Volume 49, Issue 3–4, pp 145–152 | Cite as

Characterization of Al2O3 Supported Nickel Catalysts Derived from RF Non-thermal Plasma Technology

  • Ben JangEmail author
  • Michael Helleson
  • Chunkai Shi
  • Adam Rondinone
  • Viviane Schwartz
  • Chengdu Liang
  • Steve Overbury
Original Paper


Catalysts derived from non-thermal plasma techniques have previously shown unusual and highly advantageous catalytic properties including room temperature reduction, unusual metal particle structure and metal-support interactions, and enhanced selectivity and stability. This study focuses on the characterization of Al2O3 supported Ni catalysts derived from the RF non-thermal plasma technique with in-situ XRD, TPR-MS and STEM and on relating the results to the enhanced activity and stability of benzene hydrogenation. The results suggest that catalysts with plasma treatments before impregnation are relatively easier to be reduced and result in better activities under mild reduction conditions. These plasma treatments stabilize the nickel particle sizes of air(B) and H2(B) catalysts at 600 °C by slowing down the sintering process. Plasma treatments after the impregnation of precursors, on the other hand, tend to delay the growth of nickel particles below 600 °C, forming smaller Ni particles, but with a sudden increase in particle size near 600 °C. It suggests that the structure of Ni nitrate and the metal-support interaction have been altered by the plasma treatments. The reduction patterns of plasma treated catalysts are, therefore, changed. The catalyst with a combination plasma treatment demonstrates that the effect of a combination plasma treatment is larger than either the plasma treatment before or after the impregnation alone. Both plasma treatments before and after the impregnation of metal precursor play important roles in modifying supported metal catalysts.


Non-thermal plasma Benzene hydrogenation Metal-support interaction Supported Ni catalysts 



The financial support of ARP-THECB and Welch Foundation is acknowledged. A portion of this research was conducted at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory, by the Division of Scientific User Facilities, U. S. DOE.


  1. 1.
    Gaigneaux E, De Vos DE, Grange P, Jacobs PA, Martens JA, Ruiz P, Poncelet G (eds) (2002) Proceedings of the 10th International Symposium. Louvain-la-Neuve, Belgium, September 9–12Google Scholar
  2. 2.
    Spivey JJ, Roberts GW, Davis BH (eds) (2001) Proceedings of the 9th International Symposium. Lexington, KY, USA, October 2001Google Scholar
  3. 3.
    Lambert J-F, Che M (2000) J Mol Catal 162:5CrossRefGoogle Scholar
  4. 4.
    Min BK, Santra AK, Goodman DW (2003) Catal Today 85:113CrossRefGoogle Scholar
  5. 5.
    Liotta LF, Longo A, Macaluso A, Martorana A, Pantaleo G, Venezia AM, Deganello G (2004) Appl Catal B 48:133CrossRefGoogle Scholar
  6. 6.
    Goodman DW (2005) Catal Lett 99:1CrossRefGoogle Scholar
  7. 7.
    Dandekar A, Vannice MA (1999) J Catal 183:344CrossRefGoogle Scholar
  8. 8.
    Bradford MCJ, Vannice MA (1996) Appl Catal A 142:73CrossRefGoogle Scholar
  9. 9.
    Ruppert AM, Paryjczak T (2007) Appl Catal A 320:80CrossRefGoogle Scholar
  10. 10.
    Bowker M, Stone P, Morrall P, Smith R, Bennett R, Perkins N, Kvon R, Pang C, Fourre E, Hall M (2005) J Catal 234:172CrossRefGoogle Scholar
  11. 11.
    Liu C-J, Vissokov GP, Jang BW-L (2002) Catal Today 72:173CrossRefGoogle Scholar
  12. 12.
    Jang BW-L, Reynolds JG, Boutonnet M, Spivey JJ (eds) (2002) Catal Today 72:171Google Scholar
  13. 13.
    Jang BW-L, Liu C, Hammer T (2004) Catal Today 89:1Google Scholar
  14. 14.
    Kim HH, Tsubota S, Daté M, Ogata A, Futamura S (2007) Appl Catal A 329:93CrossRefGoogle Scholar
  15. 15.
    Li J, Ke R, Li W, Hao J (2007) Catal Today 126:272CrossRefGoogle Scholar
  16. 16.
    Zou J-J, He H, Cui L, Du H-Y (2007) Int J Hydrogen Energy 32:1762CrossRefGoogle Scholar
  17. 17.
    Tyczkowski J, Kapica R, Łojewska J (2007) Thin Solid Films 515:6590CrossRefGoogle Scholar
  18. 18.
    Ratanatawanate C, Macias M, Jang BW-L (2005) Ind Eng Chem Res 44:9868CrossRefGoogle Scholar
  19. 19.
    Shi C, Hoisington R, Jang BW-L (2007) Ind Eng Chem Res 46:4390CrossRefGoogle Scholar
  20. 20.
    Shi C, Jang BW-L (2006) Ind Eng Chem Res 45:5879CrossRefGoogle Scholar
  21. 21.
    Liu C, Zou J, Yu K, Cheng D, Zhan J, Ratanatawanate C, Jang B (2006) Int Union Pure Appl Chem 78:1227CrossRefGoogle Scholar
  22. 22.
    Yuvaraj S, Lin F, Chang T, Yeh C (2003) J Phys Chem B 107:1044CrossRefGoogle Scholar
  23. 23.
    Zou J, Zhang Y, Liu C (2006) Langmuir 22:2334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ben Jang
    • 1
    Email author
  • Michael Helleson
    • 1
  • Chunkai Shi
    • 1
  • Adam Rondinone
    • 2
  • Viviane Schwartz
    • 2
  • Chengdu Liang
    • 2
  • Steve Overbury
    • 2
  1. 1.Chemistry DepartmentTexas A&M U.-CommerceCommerceUSA
  2. 2.Center for Nanophase Materials SciencesORNLOak RidgeUSA

Personalised recommendations