Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Techniques for Fabricating Nanoscale Catalytic Circuits

  • 96 Accesses

  • 1 Citations

Abstract

This paper describes the development of a new technique, atomic beam deposition (ABD), for the fabrication of catalysts with different active sites capable of catalyzing different chemical reactions. Using ABD, submonolayer amounts of Te and Cu atoms were deposited on vanadyl pyrophosphate (VPO) catalyst particles, and precise non-steady-state kinetic characterization was performed using the temporal analysis of products (TAP) reactor immediately following deposition. Results from TAP Knudsen pulse response experiments determine if small changes in the metal surface composition would produce detectable changes in catalytic properties. Partial oxidation of 1-butene to furan was used as the test reaction. Furthermore, this paper also demonstrates the sensitivity of the TAP reactor by measuring oxygen uptake on a single 350 μm diameter polycrystalline Pt particle packed in a bed with 100,000 inert quartz particles of similar dimensions. The Pt experiments demonstrate the precise manipulation of surface oxygen content.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Roco MC (1999) J Nanopart Res 1:1–6

  2. 2.

    Bell AT (2003) Sci Mag 299:1688–1691

  3. 3.

    Cao G (2004) Nanostructures and nanomaterials: synthesis, properties, and applications. Imperial College Press, pp 1–448

  4. 4.

    Bond GC, Tahir SF (1991) App Catal 71:1–31

  5. 5.

    Fushimi R, Gleaves JT, Yablonsky GS, Gaffney A, Clark M, Han S (2007) Catal Today 121:170–186

  6. 6.

    Berthet A, Thomann A, Cadete Santos Aires F, Brun M, Deranlot C, Dertolini J, Rozenbaum J, Brault P, Andreazza P (2000) J Catal 190:49–59

  7. 7.

    Quintana M, Haro-Poniatowasi E, Morales J, Batina N (2002) Appl Surf Sci 195:175–186

  8. 8.

    El Khakani M, Dolbec R, Serventi A, Horrillo M, Trudeau M, Saint-Jacques R, Rickerby D, Sayago I (2001) Sens Actuators B Chem 77:383–388

  9. 9.

    Yamaguchi W, Yoshimura K, Tai Y, Maruyama Y, Igarashi K, Tanemura S, Murakami J (2000) J Chem Phys 112:9961

  10. 10.

    Zhang ZJ, Huang J, Fan S, Liber C (1996) Mater Sci Eng A 209:5–9

  11. 11.

    Kwok H (1992) Thin Solid Films 218:277–290

  12. 12.

    Heer W (1993) Rev Modern Phys 65:611

  13. 13.

    Bower J, Jarrold M (1992) J Chem Phys 97:8312

  14. 14.

    Hall S, Nielsen M, Robinson A, Palmer R (1997) Rev Sci Instrum 68:3335

  15. 15.

    Kim K, Ryu CK (1994) U.S. Patent Number 5344676

  16. 16.

    Hodnett BK (2000) Heterogeneous catalytic oxidation: fundamental and technological aspects of the selective and total oxidation of organic compounds, Wiley, pp 1–360

  17. 17.

    Centi G, Cavani F, Trifiro F (2001) Selective oxidation by heterogeneous catalysis. Kluwer Academic/Plenum Publishers, New York, pp 1–514

  18. 18.

    Paszti Z, Horvath ZE, Peto G, Karacs A, Guczi L (1997) App Surf Sci 109/110:67–73

  19. 19.

    Paszti Z, Peto G, Horvath ZE, Karacs A (2000) Appl Surf Sci 168:114–117

  20. 20.

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X (2005) Phys Rev B 71:033406

  21. 21.

    Kar A, Mazumder J (1994) Phys Rev E 49:410–419

  22. 22.

    Eppler AS, Rupprechter G, Guczi L, Somorjai GA (1997) J Phys Chem B 101:9973–9977

  23. 23.

    Schwarz J, Contescu C, Contescu A (1995) Chem Rev 95:477

  24. 24.

    Hong S, Mielczarski E, Davis M (1992) J Catal 134:349

  25. 25.

    Gleaves JT, Yablonskii GS, Phanawadee P, Schuurman Y (1997) ApplCatal A General 160:55–88

  26. 26.

    Yablonsky GS, Olea M, Marin GB (2003) J Catal 216:120–134

  27. 27.

    Gleaves JT, Ebner JR, Kuechler TC (1988) Catal Rev-Sci Eng 30:49–116

  28. 28.

    Perez-Ramirez J, Kondratenko EV (eds) (2007) Catal Today 121:1–124

  29. 29.

    Shekhtman SO, Yablonsky GS, Gleaves JT, Fushimi R (2003) Chem Eng Sci 58:4843–4859

  30. 30.

    Yablonsky GS, Constales D, Shekhtman SO, Gleaves JT (2007) Chem Eng Sci (in press)

  31. 31.

    Shekhtman SO, Yablonsky GS, Gleaves JT, Fushimi RR (2004) Chem Eng Sci 59:5493–5500

  32. 32.

    Shekhtman SO, Yablonsky GS (2005) Ind Eng Chem Res 44:6518–6522

  33. 33.

    Shekhtman SO, Yablonsky GS, Chen S, Gleaves JT (1999) Chem Eng Sci 54:4371–4378

  34. 34.

    Phanawadee P, Shekhtman SO, Jarungmanorom C, Yablonsky GS, Gleaves JT (2003) Chem Eng Sci 58:2215–2227

  35. 35.

    Yablonskii GS, Shekhtman SO, Chen S, Gleaves JT (1998) Ind Eng Chem Res 37:2193–2202

Download references

Acknowledgments

This work was supported by an NSF GOALI grant CTS-0432593 and Rohm and Haas Company.

Author information

Correspondence to John T. Gleaves.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fushimi, R., Zheng, X., Gleaves, J.T. et al. Techniques for Fabricating Nanoscale Catalytic Circuits. Top Catal 49, 167–177 (2008). https://doi.org/10.1007/s11244-008-9090-3

Download citation

Keywords

  • Atomic beam deposition
  • Temporal analysis of products (TAP)
  • Heterogeneous catalysis
  • VPO
  • Non-steady-state kinetics