Topics in Catalysis

, Volume 49, Issue 3–4, pp 126–135 | Cite as

Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and Their Influence on Activity and Selectivity

  • Gabor A. Somorjai
  • Jeong Y. Park
Original Paper


Recent breakthroughs in the synthesis of nanosciences have achieved the control of size and shape of nanoparticles that are relevant for catalyst design. In this article, we review advances in the synthesis of nanoparticles, fabrication of two- and three-dimensional model catalyst systems, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles 1–10 nm in size permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticles on chemical reactivity and selectivity. We review the importance of the size and shape of nanoparticles to determine reaction selectivity in multi-path reactions. The influence of metal–support interaction has been studied by probing the hot electron flows through the metal–oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are also discussed.


Platinum Rhodium Nanoparticle Reaction selectivity Multi-path reactions Nanoscience Metal–oxide interface Catalytic nanodiode Bimetallic nanoparticles Enzyme Homogeneous Heterogeneous catalysis 



This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


  1. 1.
    Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757–3778CrossRefGoogle Scholar
  2. 2.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316:732–735CrossRefGoogle Scholar
  3. 3.
    Bell AT (2003) Science 299:1688–1691CrossRefGoogle Scholar
  4. 4.
    Rioux RM, Song H, Grass M, Habas S, Niesz K, Hoefelmeyer JD, Yang P, Somorjai GA (2006) Top Catal 39:167–174CrossRefGoogle Scholar
  5. 5.
    Somorjai GA, Rioux RM (2005) Catal Today 100:201–215CrossRefGoogle Scholar
  6. 6.
    Freund HJ, Kuhlenbeck H, Libuda J, Rupprechter G, Baumer M, Hamann H (2001) Top Catal 15:201–209CrossRefGoogle Scholar
  7. 7.
    Narayanan R, El-Sayed MA (2004) Nano Letters 4:1343–1348CrossRefGoogle Scholar
  8. 8.
    Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang PD (2006) Angew Chem Int Ed 45:7824–7828CrossRefGoogle Scholar
  9. 9.
    Niesz K, Grass M, Somorjai GA (2005) Nano Letters 5:2238–2240CrossRefGoogle Scholar
  10. 10.
    Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) J Phys Chem B 109:2192–2202CrossRefGoogle Scholar
  11. 11.
    Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang PD, Somorjai GA (2006) J Am Chem Soc 128:3027–3037CrossRefGoogle Scholar
  12. 12.
    Somorjai GA, Park JY (2007) Catal Lett 115:87–98CrossRefGoogle Scholar
  13. 13.
    Somorjai GA, Park JY (2007) Phys Today 60:48–53CrossRefGoogle Scholar
  14. 14.
    Somorjai GA, York RL, Butcher D, Park JY (2007) Phys Chem Chem Phys 9:3500–3513CrossRefGoogle Scholar
  15. 15.
    Humphrey SM, Grass ME, Habas SE, Niesz K, Somorjai GA, Tilley TD (2007) Nano Letters 7:785–790CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Grass ME, Habas SE, Tao F, Zhang T, Yang P, Somorjai GA (2007) J Phys Chem C 111:12243–12253CrossRefGoogle Scholar
  17. 17.
    Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nano Letters 7:3097–3101CrossRefGoogle Scholar
  18. 18.
    Song H, Kim F, Connor S, Somorjai GA, Yang PD (2005) J Phys Chem B 109:188–193CrossRefGoogle Scholar
  19. 19.
    Boudart M, Loffler DG (1984) J Phys Chem 88:5763–5763CrossRefGoogle Scholar
  20. 20.
    Spencer ND, Schoonmaker RC, Somorjai GA (1982) J Catal 74:129–135CrossRefGoogle Scholar
  21. 21.
    Topøse H, Topsøe N, Bohlbro H, Dumesic JA (1981) In: Seiyama T, Tanabe K (eds) Proceedings of the 7th international congress on catalysis, part A. Kodansha, Tokyo, p 247Google Scholar
  22. 22.
    Zaera F, Somorjai GA (1984) J Am Chem Soc 106:2288–2293CrossRefGoogle Scholar
  23. 23.
    Somorjai GA, Bratlie KM, Montano MO, Park JY (2006) J Phys Chem B 110:20014–20022CrossRefGoogle Scholar
  24. 24.
    Hendriksen BLM, Frenken JWM (2002) Phys Rev Lett 89:Google Scholar
  25. 25.
    Jensen JA, Rider KB, Salmeron M, Somorjai GA (1998) Phys Rev Lett 80:1228–1231CrossRefGoogle Scholar
  26. 26.
    Montano M, Salmeron M, Somorjai GA (2006) Surf Sci 600:1809–1816CrossRefGoogle Scholar
  27. 27.
    Osterlund L, Rasmussen PB, Thostrup P, Laegsgaard E, Stensgaard I, Besenbacher F (2001) Phys Rev Lett 86:460–463CrossRefGoogle Scholar
  28. 28.
    Tang DC, Hwang KS, Salmeron M, Somorjai GA (2004) J Phys Chem B 108:13300–13306CrossRefGoogle Scholar
  29. 29.
    Bratlie KM, Kliewer CJ, Somorjai GA (2006) J Phys Chem B 110:17925–17930CrossRefGoogle Scholar
  30. 30.
    Shen YR (1989) Annu Rev Phys Chem 40:327–350CrossRefGoogle Scholar
  31. 31.
    Su XC, Cremer PS, Shen YR, Somorjai GA (1996) Phys Rev Lett 77:3858–3860CrossRefGoogle Scholar
  32. 32.
    Bratlie KM, Flores LD, Somorjai GA (2005) Surf Sci 599:93–106CrossRefGoogle Scholar
  33. 33.
    McIntyre BJ, Salmeron M, Somorjai GA (1993) J Vac Sci Technol A-Vac Surf Films 11:1964–1968CrossRefGoogle Scholar
  34. 34.
    Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Nat Mater 6:692–697CrossRefGoogle Scholar
  35. 35.
    Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2002) J Am Chem Soc 124:11480–11485CrossRefGoogle Scholar
  36. 36.
    Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Nature 439:55–59CrossRefGoogle Scholar
  37. 37.
    Aldinger F (1974) Acta Metall 22:923–928CrossRefGoogle Scholar
  38. 38.
    Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711–714CrossRefGoogle Scholar
  39. 39.
    Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170–175CrossRefGoogle Scholar
  40. 40.
    Hayek K, Fuchs M, Klotzer B, Reichl W, Rupprechter G (2000) Top Catal 13:55–66CrossRefGoogle Scholar
  41. 41.
    Schwab GM (1967) Angew Chem Int Ed 6:375Google Scholar
  42. 42.
    Gadzuk JW (2002) J Phys Chem B 106:8265–8270CrossRefGoogle Scholar
  43. 43.
    Hellberg L, Stromquist J, Kasemo B, Lundqvist BI (1995) Phys Rev Lett 74:4742–4745CrossRefGoogle Scholar
  44. 44.
    Huang YH, Rettner CT, Auerbach DJ, Wodtke AM (2000) Science 290:111–114CrossRefGoogle Scholar
  45. 45.
    Ji XZ, Zuppero A, Gidwani JM, Somorjai GA (2005) Nano Letters 5:753–756CrossRefGoogle Scholar
  46. 46.
    Park JY, Renzas JR, Contreras AM, Somorjai GA (2007) Top Catal 46:217CrossRefGoogle Scholar
  47. 47.
    Park JY, Somorjai GA (2006) Chemphyschem 7:1409–1413CrossRefGoogle Scholar
  48. 48.
    Park JY, Renzas JR, Hsu BB, Somorjai GA (2007) J Phys Chem C 111:15331–15336CrossRefGoogle Scholar
  49. 49.
    Tian J, Hustad PD, Coates GW (2001) J Am Chem Soc 123:5134–5135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials Sciences Division and Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations