Advertisement

Topics in Catalysis

, 48:60 | Cite as

Can the Observed Changes in the Size or Shape of a Colloidal Nanocatalyst Reveal the Nanocatalysis Mechanism Type: Homogeneous or Heterogeneous?

  • Radha Narayanan
  • Christopher Tabor
  • Mostafa A. El-SayedEmail author
Original Paper

Abstract

The surface energy of metallic nanocrystals is relatively high compared to bulk materials due to the metal–metal bond deficiency of the surface atoms. This results in an insufficient chemical valency. In addition, smaller nanoparticles possess a higher degree of curvature, weakening the bonding of their surface atoms. This is especially true for non-spherical shapes, which are comprised of a large number of sharp corner and edge sites. These atomic sites possess higher surface energies due to the lower number of shared bonds with the nanoparticle, resulting in instability of the surface atoms and rendering them physically unstable and chemically active. In many instances, the constant “bombardment” of these surface atoms by the solvent molecules as well as by the reactant molecules when these nanocrystals are in colloidal solution could lead to surface atom dissolution, both physically and/or chemically. This phenomenon could alter the functionality of the metallic colloidal nanoparticle from supplying catalytically active sites (in heterogeneous catalysis) to serving as a reservoir of catalytically active species to the solution (in homogeneous catalysis). In the latter type, if the atoms of the nanocatalyst appear in the products, the nanoparticle is no longer a catalyst but a reactant. In this review we attempt to answer the question raised in the title by examining our previous work on the changes in size, shape, and other physical and chemical properties of colloidal transition metal nanoparticles during the nanocatalysis of two fundamentally different and important reactions: (1) the gentle electron-transfer reaction at room temperature involving the reduction of hexacyanoferrate (III) ions with thiosulfate ions and (2) the more harsh Suzuki cross-coupling reaction between phenylboronic acid and iodobenzene that takes place at 100 °C for 12 h. Changes in the nanoparticle dimensions were followed with TEM and HRTEM. Raman and FTIR spectroscopies were used to follow the chemical changes. For each change, we will use the above definition to see if the observed change can help us determine whether the catalysis is homogeneous or heterogeneous.

Keywords

Homogeneous Heterogeneous Transition metal Colloidal nanocatalysis mechanism Nanoparticle Shape-dependent Platinum Palladium 

Notes

Acknowledgments

We thank Dr. Wenyu Huang for his careful reading and work on the manuscript. We acknowledge NSF CHE #0554668 for funding. We also thank the Georgia Tech Electron Microscopy Center for the JEOL 100C and JEM 4000EX TEM and HRTEM facilities that we used in our studies.

References

  1. 1.
    Phan NTS, Van Der Sluys M, Jones CW (2006) Adv Synth Catal 348:609CrossRefGoogle Scholar
  2. 2.
    Astruc D (2007) Inorg Chem (Washington, DC, USA) 46:1884Google Scholar
  3. 3.
    Narayanan R, El-Sayed MA (2005) Langmuir 21:2027CrossRefGoogle Scholar
  4. 4.
    Narayanan R, El-Sayed MA (2004) J Phys Chem B 108:5726CrossRefGoogle Scholar
  5. 5.
    Narayanan R, El-Sayed MA (2003) J Am Chem Soc 125:8340CrossRefGoogle Scholar
  6. 6.
    Narayanan R, El-Sayed MA (2003) J Phys Chem B 107:12416CrossRefGoogle Scholar
  7. 7.
    Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:4357CrossRefGoogle Scholar
  8. 8.
    Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:18460CrossRefGoogle Scholar
  9. 9.
    Akagi T, Kaneko T, Kida T, Akashi M (2006) J Biomater Sci Polym Ed 17:875CrossRefGoogle Scholar
  10. 10.
    Shchukin DG, Sviridov DV (2006) J Photochem Photobiol, C: Photochem Rev 7:23CrossRefGoogle Scholar
  11. 11.
    Huang X, El-Sayed IH, El-Sayed MA (2005) Proc SPIE- Int Soc Optical Eng 5929:59290I/1Google Scholar
  12. 12.
    Liang Z, Wang C, Tong Z, Ye W, Ye S (2005) React Funct Polym 63:85CrossRefGoogle Scholar
  13. 13.
    Li Y (2001) Catalysis of colloidal transition metal nanoparticles in aqueous medium. 180 ppGoogle Scholar
  14. 14.
    Li Y, Boone E, El-Sayed MA (2002) Langmuir 18:4921CrossRefGoogle Scholar
  15. 15.
    Narayanan R, El-Sayed MA (2004) Nano Letters 4:1343CrossRefGoogle Scholar
  16. 16.
    Narayanan R, El-Sayed MA (2004) J Am Chem Soc 126:7194CrossRefGoogle Scholar
  17. 17.
    Narayanan R, El-Sayed MA (2004) J Phys Chem B 108:8572CrossRefGoogle Scholar
  18. 18.
    Freund PL, Spiro M (1985) J Phys Chem 89:1074CrossRefGoogle Scholar
  19. 19.
    Qiu L, Liu F, Zhao L, Yang W, Yao J (2006) Langmuir 22:4480CrossRefGoogle Scholar
  20. 20.
    Sharma RK, Sharma P, Maitra A (2003) J Colloid Interface Sci 265:134CrossRefGoogle Scholar
  21. 21.
    Li D, Sun C, Huang Y, Li J, Chen S (2005) Sci China, Ser B: Chem 48:424CrossRefGoogle Scholar
  22. 22.
    Jana NR, Wang ZL, Pal T (2000) Langmuir 16:2457CrossRefGoogle Scholar
  23. 23.
    Mallick K, Witcomb MJ, Scurrell MS (2005) Appl Phys A: Mater Sci Process 80:797CrossRefGoogle Scholar
  24. 24.
    Ghosh SK, Kundu S, Mandal M, Pal T (2002) Langmuir 18:8756CrossRefGoogle Scholar
  25. 25.
    Ghosh SK, Mandal M, Kundu S, Nath S, Pal T (2004) Appl Catal A: Gen 268:61CrossRefGoogle Scholar
  26. 26.
    Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596CrossRefGoogle Scholar
  27. 27.
    Yang J, Lee JY, Too H-P (2006) Anal Chim Acta 571:206CrossRefGoogle Scholar
  28. 28.
    Tsunoyama H, Sakurai H, Tsukuda T (2006) Chem Phys Lett 429:528CrossRefGoogle Scholar
  29. 29.
    Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663CrossRefGoogle Scholar
  30. 30.
    Sau TK, Pal A, Pal T (2001) J Phys Chem B 105:9266CrossRefGoogle Scholar
  31. 31.
    Somorjai GA, Bratlie KM, Montano MO, Park JY (2006) J Phys Chem B 110:20014CrossRefGoogle Scholar
  32. 32.
    van Bokhoven JA, Miller JT (2007) AIP Conf Proc 882:582CrossRefGoogle Scholar
  33. 33.
    Freund PL, Spiro M (1986) J Chem Soc, Faraday Trans 1: Phys Chem Condense Phases 82:2277Google Scholar
  34. 34.
    Miyaura N, Yanagi T, Suzuki A (1981) Synth Commun 11:513CrossRefGoogle Scholar
  35. 35.
    Yin L, Liebscher J (2007) Chem Rev (Washington, DC, USA) 107:133Google Scholar
  36. 36.
    de Vries AHM, Mulders JMCA, Mommers JHM, Henderickx HJW, de Vries JG (2003) Org Lett 5:3285CrossRefGoogle Scholar
  37. 37.
    Jeffery T (1996) Tetrahedron 52:10113CrossRefGoogle Scholar
  38. 38.
    Reetz MT, Westermann E (2000) Angewandte Chemie, Int Edn 39:165CrossRefGoogle Scholar
  39. 39.
    De Vries JG (2006) Dalton Trans 421Google Scholar
  40. 40.
    Widegren JA, Finke RG (2003) J Mol Catal A: Chem 198:317CrossRefGoogle Scholar
  41. 41.
    Beller M, Fischer H, Kuehlein K, Reisinger CP, Herrmann WA (1996) J Organomet Chem 520:257CrossRefGoogle Scholar
  42. 42.
    Reetz MT, Lohmer G (1996) Chem Commun (Cambridge), 1921Google Scholar
  43. 43.
    Le Bars J, Specht U, Bradley JS, Blackmond DG (1999) Langmuir 15:7621CrossRefGoogle Scholar
  44. 44.
    Liu Y, Khemtong C, Hu J (2004) Chem Commun (Cambridge, United Kingdom), 398Google Scholar
  45. 45.
    Hu J, Liu Y (2005) Langmuir 21:2121CrossRefGoogle Scholar
  46. 46.
    Gniewek A, Trzeciak AM, Ziolkowski JJ, Kepinski L, Wrzyszcz J, Tylus W (2005) J Catal 229:332CrossRefGoogle Scholar
  47. 47.
    Cassol CC, Umpierre AP, Machado G, Wolke SI, Dupont J (2005) J Am Chem Soc 127:3298CrossRefGoogle Scholar
  48. 48.
    Gruber AS, Pozebon D, Monteiro AL, Dupont J (2001) Tetrahedron Lett 42:7345CrossRefGoogle Scholar
  49. 49.
    Arvela RK, Leadbeater NE, Sangi MS, Williams VA, Granados P, Singer RD (2005) J Org Chem 70:161CrossRefGoogle Scholar
  50. 50.
    Luo C, Zhang Y, Wang Y (2005) J Mol Catal A: Chem 229:7CrossRefGoogle Scholar
  51. 51.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science (Washington, DC) 272:1924CrossRefGoogle Scholar
  52. 52.
    Li Y, Hong XM, Collard DM, El-Sayed MA (2000) Org Lett 2:2385CrossRefGoogle Scholar
  53. 53.
    Li Y, El-Sayed MA (2001) J Phys Chem B 105:8938CrossRefGoogle Scholar
  54. 54.
    Narayanan R, El-Sayed MA (2005) J Catal 234:348CrossRefGoogle Scholar
  55. 55.
    Li Y, Petroski J, El-Sayed MA (2000) J Phys Chem B 104:10956CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Radha Narayanan
    • 1
  • Christopher Tabor
    • 2
  • Mostafa A. El-Sayed
    • 2
    Email author
  1. 1.Center for Nanobiotechnology, Department of ChemistryUniversity of UtahSalt Lake CityUSA
  2. 2.Laser Dynamics Laboratory, School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations