Advertisement

Topics in Catalysis

, Volume 48, Issue 1–4, pp 75–83 | Cite as

Solid State and Gas Phase NMR Studies of Immobilized Catalysts and Catalytic Active Nanoparticles

  • Anna Adamczyk
  • Yeping Xu
  • Bernadeta Walaszek
  • Frank Roelofs
  • Tal Pery
  • Karin Pelzer
  • Karine Philippot
  • Bruno Chaudret
  • Hans-Heinrich Limbach
  • Hergen Breitzke
  • Gerd BuntkowskyEmail author
Original Paper

Abstract

In the current study two new classes of stabile, catalytic active nanomaterials are investigated. The first class of nanoparticles consists of an inner metal core. To stabilize their structure the metal core is surrounded by organic ligands or embedded in a polymer. The second class consists of catalysts immobilized on mesoporous silica supports of SBA-3 type silica. Employing a combination of 1H, 2H, 13C and 29Si-solid state NMR spectroscopy the structure of the catalysts is analyzed. As a simple model for the catalytic properties of the particles, the activation of 2H2 gas on the surface of the particles is studied. Employing 1H and 2H gas phase NMR the kinetics of simple catalytic model reactions is studied. Employing 2H-NMR solid state NMR spectroscopy, the interaction of the metal surface with the substrate is characterized and kinetic data, which characterize the mobility of the deuterium on the surface, are extracted. For the interpretation of these data, parallel NMR studies of model η2-bound transition metal complexes are employed, which allow, owing to their simpler geometry and higher sensitivity, a quantitative modeling of the spin dynamics in the NMR experiment.

Keywords

Mesoporous silica Immobilized catalysts Solid-state NMR Nano-catalysts Dihydrogen 

Notes

Acknowledgment

Financial support by the Deutsche Forschungsgemeinschaft under research grant Bu-911-12-1 is gratefully acknowledged.

References

  1. 1.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  2. 2.
    Sayari A, Hamoudi S (2001) Chem Mater 13:3151–3168CrossRefGoogle Scholar
  3. 3.
    Linssen T, Cassiers K, Cool P, Vansant E (2003) Adv Colloid Interface Sci 103:121CrossRefGoogle Scholar
  4. 4.
    Selvam P, Bhatia SK, Sonwane CG (2001) Ind Eng Chem Res 40:3237CrossRefGoogle Scholar
  5. 5.
    Schreiber A, Ketelsen I, Findenegg GH (2001) Phys Chem Chem Phys 3:1185CrossRefGoogle Scholar
  6. 6.
    Schüth F, Schmidt W (2002) Adv Eng Mater 4:269–279CrossRefGoogle Scholar
  7. 7.
    Anwander R, Nagl I, Widenmayer M, Engelhardt G, Groeger O, Palm C, Röser T (2000) J Phys Chem B 104:3532CrossRefGoogle Scholar
  8. 8.
    Whilton NT, Berton B, Bronstein L, Hentze H-P, Antonietti M (1999) Adv Mater 11:1014CrossRefGoogle Scholar
  9. 9.
    Vinu A, Hossain KZ, Ariga K (2005) J Nanosci Nanotechnol 5:347–371CrossRefGoogle Scholar
  10. 10.
    Morey MS, Davidson A, Stucky GD (1998) J Porous Mater 5:195–204CrossRefGoogle Scholar
  11. 11.
    Chen HT, Huh S, Wiench JW, Pruski M, Lin VSY (2005) Abstr Pap Am Chem Soc 229:U983Google Scholar
  12. 12.
    Chen HT, Huh S, Wiench JW, Pruski M, Lin VSY (2005) J Am Chem Soc 127:13305–13311CrossRefGoogle Scholar
  13. 13.
    Wang XG, Lin KSK, Chan JCC, Cheng SF (2005) J Phys Chem B 109:1763–1769CrossRefGoogle Scholar
  14. 14.
    Vinu A, Miyahara M, Ariga K (2006) J Nanosci Nanotechnol 6:1510–1532CrossRefGoogle Scholar
  15. 15.
    Aksnes DW, Gjerdaker L (1999) J Mol Struct 27Google Scholar
  16. 16.
    Courivaud F, Hansen EW, Kolboe S, Karlsson A, Stöcker M (2000) Microporous Mesoporous Mater 37:223CrossRefGoogle Scholar
  17. 17.
    Jobic H (1999) Phys Chem Chem Phys 1:525CrossRefGoogle Scholar
  18. 18.
    Ladizhansky V, Hodes G, Vega S (2000) J Phys Chem B 104:1939CrossRefGoogle Scholar
  19. 19.
    Mel’nichenko YB, Schüller J, Richert R, Ewen B, Loong C-K (1995) J Chem Phys 103:2016CrossRefGoogle Scholar
  20. 20.
    Gjerdaker L, Sorland GH, Aknes DW (1999) Microporous Mesoporous Mater 32:305CrossRefGoogle Scholar
  21. 21.
    Hansen EW, Schmidt R, Stöcker M, Akporiaye D (1995) Microporous Mater 5:143CrossRefGoogle Scholar
  22. 22.
    Gedat E, Schreiber A, Albrecht J, Shenderovich I, Findenegg G, Limbach H-H, Buntkowsky G (2002) J Phys Chem B 106:1977CrossRefGoogle Scholar
  23. 23.
    Valiullin R, Naumov S, Galvosas P, Kärger J, Woo H-J, Porcheron F, Monson PA (2006) Nature 443:965CrossRefGoogle Scholar
  24. 24.
    Buntkowsky G, Breitzke H, Adamczyk A, Roelofs F, Emmler T, Gedat E, Grünberg B, Xu Y, Limbach HH, Shenderovich I, Vyalikh A, Findenegg GH (2007) Phys Chem Chem Phys 9(35):4843–4853CrossRefGoogle Scholar
  25. 25.
    Niu SQ, Thomson LM, Hall MB (1998) J Am Chem Soc 121:4000CrossRefGoogle Scholar
  26. 26.
    Cucullu ME, Nolan SP, Belderrain TR, Grubbs RH (1998) Organometallics 17:1299CrossRefGoogle Scholar
  27. 27.
    Lough AJ, Morris RH, Ricciuto L, Schleis T (1998) Inorg Chim Acta 270:238CrossRefGoogle Scholar
  28. 28.
    Esteruelas MA, Oro LA (1998) Chem Rev 98:577CrossRefGoogle Scholar
  29. 29.
    Matthes J, Grundemann S, Toner A, Guari Y, Donnadieu B, Spandl J, Sabo-Etienne S, Clot E, Limbach HH, Chaudret B (2004) Organometallics 23:1424–1433CrossRefGoogle Scholar
  30. 30.
    Maseras F, Lledos A, Clot E, Eisenstein O (2000) Chem Rev 100:601–636CrossRefGoogle Scholar
  31. 31.
    Macchioni A (2005) Chem Rev 105:2039–2073CrossRefGoogle Scholar
  32. 32.
    Lachaize S, Essalah W, Montiel-Palma V, Vendier L, Chaudret B, Barthelat JC, Sabo-Etienne S (2005) Organometallics 24:2935–2943CrossRefGoogle Scholar
  33. 33.
    Aebischer N, Frey U, Merbach AE (1998) Chem Comm 2303Google Scholar
  34. 34.
    Albertin G, Antoniutti S, Garciafontan S, Carballo R, Padoan F (1998) J Chem Soc Dalton trans 2071Google Scholar
  35. 35.
    Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163CrossRefGoogle Scholar
  36. 36.
    Bakhmutov VI (1998) Inorg Chem 37:279CrossRefGoogle Scholar
  37. 37.
    Bartucz TY, Golombek A, Lough AJ, Maltby PA, Morris RH, Ramachandran R, Schlaf M (1998) Inorg Chem 37:1555CrossRefGoogle Scholar
  38. 38.
    Basallote MG, Duran J, Fernandez-Trujillo MJ, Manez MA (1998) J Chem Soc Dalton Trans 2205Google Scholar
  39. 39.
    Bohanna C, Callejas B, Edwards AJ, Esteruelas MA, Lahoz FJ, Oro LA, Ruiz N, Valero C (1998) Organometallics 17:373CrossRefGoogle Scholar
  40. 40.
    Buntkowsky G, Limbach H-H, Wehrmann F, Sack I, Vieth HM, Morris RH (1997) J Phys Chem A 101:4679CrossRefGoogle Scholar
  41. 41.
    Chaudret B (1998) Coord Chem Rev 180:381CrossRefGoogle Scholar
  42. 42.
    Cooper AC, Caulton KG (1998) Inorg Chem 37:5938CrossRefGoogle Scholar
  43. 43.
    Crabtree RH (1998) J Organomet Chem 557:111CrossRefGoogle Scholar
  44. 44.
    Gelabert R, Moreno M, Lluch JM, Lledos A (1998) J Am Chem Soc 120:8168CrossRefGoogle Scholar
  45. 45.
    Gründemann S, Limbach H-H, Rodriguez V, Donnadieu B, Sabo-Etienne S, Chaudret B (1998) Ber Bunsen Phys Chem 102:344Google Scholar
  46. 46.
    Hasegawa T, Li ZW, Taube H (1998) Chem Lett 7Google Scholar
  47. 47.
    Limbach H-H, Ulrich S, Gründemann S, Buntkowsky G, Sabo-Etienne S, Chaudret B, Kubas GJ, Eckert J (1998) J Am Chem Soc 120:7929CrossRefGoogle Scholar
  48. 48.
    Macfarlane KS, Thorburn IS, Cyr PW, Chau D, Rettig SJ, James BR (1998) Inorg Chim Acta 270:130CrossRefGoogle Scholar
  49. 49.
    Ng WS, Jia GC, Huang MY, Lau CP, Wong KY, Wen LB (1998) Organometallics 17:4556CrossRefGoogle Scholar
  50. 50.
    Popelier PLA (1998) J Phys Chem A 102:1873CrossRefGoogle Scholar
  51. 51.
    Sabo-Etienne S, Chaudret B (1998) Chem Rev 98:2077CrossRefGoogle Scholar
  52. 52.
    Stahl SS, Labinger JA, Bercaw JE (1998) Inorg Chem 37:2422CrossRefGoogle Scholar
  53. 53.
    Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) J Am Chem Soc 116:451CrossRefGoogle Scholar
  54. 54.
    Kubas GJ (1988) J Acc Chem Res 21:120CrossRefGoogle Scholar
  55. 55.
    Jessop PG, Morris RH (1992) Coord Chem Rev 121:155CrossRefGoogle Scholar
  56. 56.
    Heinekey DM, Oldham WJ (1993) J Chem Rev 93:913CrossRefGoogle Scholar
  57. 57.
    Luther TA, Heinekey DM (1998) Inorg Chem 37:127CrossRefGoogle Scholar
  58. 58.
    Toupadakis A, Kubas GJ, King WA, Scott LB, Huhmann-Vincent J (1998) Organometallics 17:5315CrossRefGoogle Scholar
  59. 59.
    Maltby PA, Steinbeck M, Lough AJ, Morris RH, Klooster WT, Koetzle TF, Srivastava RC (1996) J Am Chem Soc 118:5396CrossRefGoogle Scholar
  60. 60.
    Buntkowsky G, Limbach HH (2006) In: Hynes JP, Klinman JP, Limbach HH, Schowen RL (eds) Hydrogen-transfer reactions, vol 2. Wiley-VCH, Weinheim, pp 639–682CrossRefGoogle Scholar
  61. 61.
    Buntkowsky G, Limbach HH (2006) J Low Temp Phys 143:55–114CrossRefGoogle Scholar
  62. 62.
    Wehrmann F, Albrecht J, Gedat E, Kubas GJ, Limbach HH, Buntkowsky G (2002) J Phys Chem A 106:2855CrossRefGoogle Scholar
  63. 63.
    Pery T, Pelzer K, Buntkowsky G, Philippot K, Limbach HH, Chaudret B (2005) Chem Phys Chem 6:605Google Scholar
  64. 64.
    Garcia-Anton J, Rosa Axet M, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Edit accepted for publicationGoogle Scholar
  65. 65.
    Matthes J, Pery T, Gründemann S, Buntkowsky G, Sabo-Etienne S, Limbach HH, Chaudret B (2004) J Am Chem Soc 126:8366CrossRefGoogle Scholar
  66. 66.
    Buntkowsky G, Walaszek B, Adamczyk A, Xu Y, Limbach H-H, Chaudret B (2006) Phys Chem Chem Phys 8:1929–1935CrossRefGoogle Scholar
  67. 67.
    Huo QS, Margolese DI, Stucky GD (1996) Chem Mater 8:1147–1160CrossRefGoogle Scholar
  68. 68.
    Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  69. 69.
    Dai L, Wang T, Bu L, Chen G (2001) Colloid Surf A 181:151–157CrossRefGoogle Scholar
  70. 70.
    Ahmad N, Levison JJ, Robinson SD, Uttley MF (1990) Inorg Synth 28:81–83CrossRefGoogle Scholar
  71. 71.
    Joseph T, Deshpande SS, Halligudi SB, Vinu A, Ernst S, Hartmann M (2003) J Mol Catal A: Chem 206:13–21CrossRefGoogle Scholar
  72. 72.
    Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove MJ (2001) J Am Chem Soc 123:7584CrossRefGoogle Scholar
  73. 73.
    Slichter CP (1990) Principles of magnetic resonance, 3rd edn. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  74. 74.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid state NMR and polymers. Academic Press, LondonGoogle Scholar
  75. 75.
    Detken A, Zimmermann H (1998) J Chem Phys 108:5845CrossRefGoogle Scholar
  76. 76.
    Mehring M (1983) High resolution NMR spectroscopy in solids. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  77. 77.
    Schmidt-Rohr K, Nanz D, Emsley L, Pines A (1994) J Phys Chem 98:6668CrossRefGoogle Scholar
  78. 78.
    Zaremba SK (1966) Ann Mat Pure Appl 4:293CrossRefGoogle Scholar
  79. 79.
    Conroy H (1967) J Chem Phys 47:5307CrossRefGoogle Scholar
  80. 80.
    Cheng VB, Suzukawa HH, Wolfsberg M (1973) J Chem Phys 59:3992CrossRefGoogle Scholar
  81. 81.
    Chin B, Lough AJ, Morris RH, Schweitzer CT, D’Agostino C (1994) Inorg Chem 33:6278CrossRefGoogle Scholar
  82. 82.
    Wehrmann F, Fong T, Morris RH, Limbach H-H, Buntkowsky G (1999) Phys Chem Chem Phys 1:4033CrossRefGoogle Scholar
  83. 83.
    Bluemel J (1995) Ber Bunsen Phys Chem 99:1343–1346Google Scholar
  84. 84.
    Merckle C, Bluemel J (2001) Chem Mater 13:3617–3623CrossRefGoogle Scholar
  85. 85.
    Merckle C, Haubrich S, Bluemel J (2001) J Organomet Chem 627:44–54CrossRefGoogle Scholar
  86. 86.
    Merckle C, Bluemel J (2005) Top Catal 34:5–15CrossRefGoogle Scholar
  87. 87.
    Bluemel J (2006) Nachr Chem 54:632–638Google Scholar
  88. 88.
    Trebosc J, Wiench JW, Huh S, Lin VSY, Pruski M (2005) J Am Chem Soc 127:3057–3068CrossRefGoogle Scholar
  89. 89.
    Huh S, Chen HT, Wiench JW, Pruski M, Lin VSY (2005) Angew Chem Int Edit 44:1826–1830CrossRefGoogle Scholar
  90. 90.
    Trebosc J, Wiench JW, Huh S, Lin VSY, Pruski M (2005) J Am Chem Soc 127:7587–7593CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anna Adamczyk
    • 1
  • Yeping Xu
    • 2
  • Bernadeta Walaszek
    • 2
  • Frank Roelofs
    • 1
  • Tal Pery
    • 2
  • Karin Pelzer
    • 3
  • Karine Philippot
    • 3
  • Bruno Chaudret
    • 3
  • Hans-Heinrich Limbach
    • 2
  • Hergen Breitzke
    • 1
  • Gerd Buntkowsky
    • 1
    Email author
  1. 1.Institut für Physikalische ChemieFSU JenaJenaGermany
  2. 2.Institut für ChemieFU BerlinBerlinGermany
  3. 3.LCC du CNRSToulouseFrance

Personalised recommendations