Topics in Catalysis

, Volume 47, Issue 1–2, pp 15–21 | Cite as

Some Aspects of Colloidal Nanoparticle Stability, Catalytic Activity, and Recycling Potential

  • Radha Narayanan
  • Mostafa A. El-SayedEmail author
Original Paper


In this review article, we examine many important aspects of the nanocatalysis field such as size and shape dependent nanocatalysis, the stability of nanoparticles during its catalytic function, and their recycling potential. We provide an overview of some of the work in the literature pertinent to these topics and also discuss some of our own work in these important areas. Some examples of how the catalytic activity is affected by the size of the nanoparticles are discussed as well as how the catalytic process affects the nanoparticle size after its catalytic function. The synthesis of platinum nanoparticles of different shapes is surveyed and the dependence of nanoparticle shape on the catalytic activity is discussed. In addition, changes in the nanoparticle shape and resulting changes in the catalytic activity are also discussed. The recycling potential of the metal nanocatalysts is also highlighted. In addition, a simple examination of the mechanism of nanocatalysis is discussed.


Nanocatalysis Transition metal nanoparticles Catalytic activity Electron transfer reaction Suzuki cross-coupling reaction Nanoparticles 



We thank NSF (CHE #0554668) for funding. We also thank the Georgia Tech Electron Microscopy Center for the TEM facilities that we used to characterize our nanoparticles. We also thank Dr. Gary Schuster’s group for the use of their HPLC instrument for the kinetic studies.


  1. 1.
    Bradley JS (1994) Clus Colloids 459Google Scholar
  2. 2.
    Duff DG, Baiker A (1995) Stud Surf Sci Catal 91:505Google Scholar
  3. 3.
    Toshima N (1996) NATO ASI Ser, Ser 3 12:371Google Scholar
  4. 4.
    Boennermann H, Braun G, Brijoux GB, Brinkman R, Tilling AS, Schulze SK, Siepen K (1996) J Organomet Chem 520(1–2):143CrossRefGoogle Scholar
  5. 5.
    Fugami K (2000) Organomet News 1:25Google Scholar
  6. 6.
    Mayer ABR (2001) Polym Adv Technol 12(1–2):96CrossRefGoogle Scholar
  7. 7.
    Bonnemann H, Richards R (2002) Syn Meth Organomet Inorg Chem 10:209Google Scholar
  8. 8.
    Moiseev II, Vargaftik MN (2002) Russ J Chem 72(4):512CrossRefGoogle Scholar
  9. 9.
    Eppler A, Rupprechter G, Guczi L, Somorjai GA (1997) J Phys Chem B 101(48):9973CrossRefGoogle Scholar
  10. 10.
    Toshima N, Yonezawa T (1998) New J Chem 22(11):1179CrossRefGoogle Scholar
  11. 11.
    Schmid G (1999) Met Clus Chem 3:1325Google Scholar
  12. 12.
    Puddephatt RJ (1999) Met Clus Chem 2:605Google Scholar
  13. 13.
    Henry CR (2000) Appl Surf Sci 164:252CrossRefGoogle Scholar
  14. 14.
    St. Clair TP, Goodman DW (2000) Top Catal 13(1,2):5CrossRefGoogle Scholar
  15. 15.
    Kralik M, Corain B, Zecca M (2000) Chem Pap 54(4):254Google Scholar
  16. 16.
    Chusuei CC, Lai X, Luo K, Goodman DW (2001) Top Catal 14(1–4):71Google Scholar
  17. 17.
    Bowker M, Bennett RA, Dickinson A, James D, Smith RD, Stone P (2001) Stud Surf Sci Catal 133:3Google Scholar
  18. 18.
    Kralik M, Biffis A (2001) J Mol Catal A Chem 177(1):113CrossRefGoogle Scholar
  19. 19.
    Thomas JM, Raja R (2001) Chem Rec 1(6):448CrossRefGoogle Scholar
  20. 20.
    Mohr C, Claus P (2001) Sci Prog 84(4):311Google Scholar
  21. 21.
    Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) Acc Chem Res 36(1):20CrossRefGoogle Scholar
  22. 22.
    Benedetti A, Fagherazzi G, Pinna F, Rampazzo G, Selva M, Strukul G (1991) Catal Lett 10:215CrossRefGoogle Scholar
  23. 23.
    Augustine RL, O’Leary ST (1995) J Mol Catal A Chem 95:277CrossRefGoogle Scholar
  24. 24.
    Van Den Tillaart JAA, Kuster BFM, Marin GB (1996) Catal Lett 36:31CrossRefGoogle Scholar
  25. 25.
    Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163CrossRefGoogle Scholar
  26. 26.
    Le Bars J, Specht U, Bradley JS, Blackmond DG (1999) Langmuir 15:7621CrossRefGoogle Scholar
  27. 27.
    Piccolo L, Henry CR (2001) J Mol Catal A Chem 167:181CrossRefGoogle Scholar
  28. 28.
    Li Y, Hong XM, Collard DM, El-Sayed MA (2000) Org Lett 2(15):2385CrossRefGoogle Scholar
  29. 29.
    Narayanan R, El-Sayed MA (2003) J Am Chem Soc 125(27):8340CrossRefGoogle Scholar
  30. 30.
    Narayanan R, El-Sayed MA (2005) Langmuir 21(5):2027CrossRefGoogle Scholar
  31. 31.
    Meier MAR, Filali M, Gohy J-F, Schubert US (2006) J Mater Chem 16(29):3001CrossRefGoogle Scholar
  32. 32.
    Mayer ABR, Mark JE (1997) Colloid Polym Sci 275(4):333CrossRefGoogle Scholar
  33. 33.
    Beletskaya IP, Kashin AN, Litvinov AE, Tyurin VS, Valetsky PM, van Koten G (2006) Organomet 25(1):154CrossRefGoogle Scholar
  34. 34.
    Sulman E, Brodrova Y, Matveeva V, Semagina N, Cerveny L, Kurte V, Bronstein L, Platonova O, Valetsky P (1999) Appl Catal A 176:75CrossRefGoogle Scholar
  35. 35.
    Wu L, Li B-L, Huang Y-Y, Zhou H-F, He Y-M, Fan Q-H (2006) Org Lett 8(16):3605CrossRefGoogle Scholar
  36. 36.
    Singh A, Chandler BD (2005) Langmuir 21(23):10776CrossRefGoogle Scholar
  37. 37.
    Zhao M, Crooks RM (1999) Angew Chem Int Ed Engl 38, 8(3): 64Google Scholar
  38. 38.
    Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34(3):181CrossRefGoogle Scholar
  39. 39.
    Gniewek A, Ziolkowski JJ, Trzeciak AM, Kepinski L (2006) J Catal 239(2):272CrossRefGoogle Scholar
  40. 40.
    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127(26):9374CrossRefGoogle Scholar
  41. 41.
    Miyazaki A, Balint I, Nakano Y (2003) J Nano Res 5(1–2):69CrossRefGoogle Scholar
  42. 42.
    Li Y, El-Sayed MA (2001) J Phys Chem B 105(37):8938CrossRefGoogle Scholar
  43. 43.
    Narayanan R, El-Sayed MA (2004) J Phys Chem B 108(25):8572CrossRefGoogle Scholar
  44. 44.
    Calo V, Nacci A, Monopoli A, Montingelli F (2005) J Org Chem 70(15):6040CrossRefGoogle Scholar
  45. 45.
    Lu F, Ruiz J, Astruc D (2004) Tetrahedron Lett 45(51):9443CrossRefGoogle Scholar
  46. 46.
    Kim N, Kwon MS, Park CM, Park J (2004) Tetrahedron Lett 45(38):7057CrossRefGoogle Scholar
  47. 47.
    Zhang Z, Zha Z, Gan C, Pan C, Zhou Y, Wang Z, Zhou M-M (2006) J Org Chem 71(11):4339CrossRefGoogle Scholar
  48. 48.
    Lou C, Zhang Y, Wang Y (2005) J Mol Catal A Chem 229(1–2):7Google Scholar
  49. 49.
    Mu X-D, Meng J-Q, Li Z-C, Kou Y (2005) J Am Chem Soc 127(27):9694CrossRefGoogle Scholar
  50. 50.
    Ohde M, Ohde H, Wai CM (2005) Langmuir 21(5):1738CrossRefGoogle Scholar
  51. 51.
    Narayanan R, El-Sayed MA (2005) J Catal 234(2):348CrossRefGoogle Scholar
  52. 52.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272(5270):1924CrossRefGoogle Scholar
  53. 53.
    Fu X, Wang Y, Wu N, Gui L, Tang Y (2002) Langmuir 18(12):4619CrossRefGoogle Scholar
  54. 54.
    Yu Y, Xu B (2003) Chin Sci Bull 48(23):2589CrossRefGoogle Scholar
  55. 55.
    Gugliotti LA, Feldheim DL, Eaton BE (2005) J Am Chem Soc 127(50):17814CrossRefGoogle Scholar
  56. 56.
    Tang Z, Geng D, Lu G (2005) Mater Lett 59(12):1567CrossRefGoogle Scholar
  57. 57.
    Li Y, Petroski J, El-Sayed MA (2000) J Phys Chem B 104:10956CrossRefGoogle Scholar
  58. 58.
    Narayanan R, El-Sayed MA (2004) Nano Lett 4(7):1343CrossRefGoogle Scholar
  59. 59.
    Narayanan R, El-Sayed MA (2005) J Phys Chem B 109(26):12663CrossRefGoogle Scholar
  60. 60.
    Narayanan R, El-Sayed MA (2004) J Am Chem Soc 126(23):7194CrossRefGoogle Scholar
  61. 61.
    Narayanan R, El-Sayed MA (2004) J Phys Chem B 108(18):5726CrossRefGoogle Scholar
  62. 62.
    Narayanan R, El-Sayed MA (2005) J Phys Chem B 109(10):4357CrossRefGoogle Scholar
  63. 63.
    Narayanan R, El-Sayed MA (2003) J Phys Chem B 107(45):12416CrossRefGoogle Scholar
  64. 64.
    Narayanan R, El-Sayed MA (2005) J Phys Chem B 109(39):18460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.USTAR Center for Nanobiosensors, Department of ChemistryUniversity of UtahSalt Lake CityUSA
  2. 2.Laser Dynamics Laboratory, School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations