Topics in Catalysis

, Volume 47, Issue 3–4, pp 166–174 | Cite as

Preparation of Highly Active TiO2 Nano-particle Photocatalysts by a Flame Aerosol Method for the Complete Oxidation of 2-Propanol

  • H. Park
  • H. S. Jie
  • B. Neppolian
  • K. Tsujimaru
  • J. P. Ahn
  • D. Y. Lee
  • J. K. ParkEmail author
  • M. AnpoEmail author
Original Paper


A flame aerosol method has been employed to prepare spherical TiO2 nano-particle photocatalysts with controlled anatase/rutile phase ratios without calcination at higher temperatures. This method was found to have important advantages since the main factors in achieving high photocatalytic activity such as the particle size, crystallinity and the anatase/rutile phase ratios could be easily controlled. In particular, the incorporation of small amounts of bimetals, such as Fe and Zn, were found to initiate the formation of well-crystalline, small and uniform spherical nano-size particles with a well-defined anatase/rutile phase ratio of around 60/40, similar to P-25 TiO2. This suppressed the recombination of the photoformed charge carriers leading to a significant increase in the photocatalytic reactivity of the TiO2 nano-particles. The incorporation of very small amounts of mono-metals, such as Fe, Cr and Zn (around 1 at.%), within the TiO2 nano-particles led to a slight increase in the photocatalytic activity of the TiO2 nano-particle photocatalysts for the complete oxidation of 2-propanol dissolved in water into CO2 and H2O as compared with the unincorporated pure TiO2. The incorporation of bimetals of Fe and Zn within TiO2 (Fe/Zn–TiO2) nano-particles, on the other hand, led to a remarkable enhancement in the photocatalytic activity as compared with the unincorporated and mono-metal incorporated TiO2.


TiO2 photocatalysts Flame aerosol method Incorporation of bimetals Complete photocatalytic oxidation of 2-propanol 



The authors would like to thank both KIST and the Japan Society for the Promotion of Science (JSPS) for their financial support.


  1. 1.
    Anpo M (2004) Bull Chem Soc Jpn 77:1427 and other references cited thereinCrossRefGoogle Scholar
  2. 2.
    Herrmann JM, Guillard C, Disdier J, Lehaut C, Malato S, Blanco J (2002) Appl Catal B 35:281CrossRefGoogle Scholar
  3. 3.
    Yan M, Chen F, Zhang J, Anpo M (2005) J Phys Chem B 109:8673CrossRefGoogle Scholar
  4. 4.
    Hurum DC, Gray KA, Rajh T, Thurnauer MC (2004) J Phys Chem B 108:16483CrossRefGoogle Scholar
  5. 5.
    Neppolian B, Jie HS, Ahn JP, Park JK, Anpo M (2004) Chem Lett 1562Google Scholar
  6. 6.
    Neppolian B, Yamashita H, Okada Y, Nishijima H, Anpo M (2004) Chem Lett 268Google Scholar
  7. 7.
    Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545CrossRefGoogle Scholar
  8. 8.
    Martyanov IN, Klabunde KJ (2004) J Catal 225:408CrossRefGoogle Scholar
  9. 9.
    Panagiotopoulou P, Kondarides D (2004) J Catal 225:327CrossRefGoogle Scholar
  10. 10.
    Pratsinis SE (1998) Prog Energy Combust Sci 24:197CrossRefGoogle Scholar
  11. 11.
    Stark WJ, Wegner K, Pratsinis SE, Baiker A (2001) J Catal 197:182CrossRefGoogle Scholar
  12. 12.
    Wegner K, Pratsinis SE (2003) AIChE 49:1667CrossRefGoogle Scholar
  13. 13.
    Wegner K, Pratsinis SE (2004) Chimica Oggi Chem Today 22:27Google Scholar
  14. 14.
    Wegner K, Stark WJ Pratsinis SE (2002) Materials Lett 55:318CrossRefGoogle Scholar
  15. 15.
    Vemury S, Pratsinis SE (1995) Appl Phys Lett 66:3275CrossRefGoogle Scholar
  16. 16.
    Choi W, Termin A, Hoffmann MR (1994) J Phys Chem B 98:13669CrossRefGoogle Scholar
  17. 17.
    Anpo M, Takeuchi M (2003) J Catal 216:505CrossRefGoogle Scholar
  18. 18.
    Yamashita H, Anpo M (2004) Catal Surv Asia 8:35CrossRefGoogle Scholar
  19. 19.
    Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Catal Today 84:191CrossRefGoogle Scholar
  20. 20.
    Liu Y, Liu CY, Rong QH, Zhang Z, Wang CY (2004) Res Chem Intermed 30:569CrossRefGoogle Scholar
  21. 21.
    Nagaveni K, Hegde MS, Madras G (2004) J Phys Chem B 108:20204CrossRefGoogle Scholar
  22. 22.
    Qi G, Yang RT (2003) Appl Catal B 44:217CrossRefGoogle Scholar
  23. 23.
    Gao W, Guan N, Chen J, Guan X, Jin R, Zeng H, Liu Z, Zhang F (2003) Appl Catal B 46:341CrossRefGoogle Scholar
  24. 24.
    Kumar MS, Schwidder M, Grunert W, Bruckner A (2004) J Catal 227:384CrossRefGoogle Scholar
  25. 25.
    Holland AW, Li G, Shahin AM, Long GJ, Bell AT, Tilley TD (2005) J Catal 235:150CrossRefGoogle Scholar
  26. 26.
    Goldfarb D, Bernardo M, Strohmaier KG, Vaughan DEW, Thomann H (1994) J Am Chem Soc 116:6344CrossRefGoogle Scholar
  27. 27.
    Selvam P, Dapurkar SE, Badamali SK, Murugasan M, Kuwano H (2001) Catal Today 68:69CrossRefGoogle Scholar
  28. 28.
    Subramanian V, Wolf EE, Kamat PV (2003) Langmuir 19:469CrossRefGoogle Scholar
  29. 29.
    Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Appl Catal A 244:383CrossRefGoogle Scholar
  30. 30.
    Ohno T, Sarukawa K, Matsumura M (2001) J Phys Chem B 105:2417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Nano-Materials Research CentreKorea Institute of Science and TechnologyCheongryang, SeoulKorea
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversityNaka-ku, SakaiJapan
  3. 3.Division of Materials Science and EngineeringKorea UniversitySeoulKorea

Personalised recommendations