Topics in Catalysis

, Volume 46, Issue 3–4, pp 402–413 | Cite as

Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts

  • William C. Chueh
  • Zongping Shao
  • Sossina M. Haile
Original Paper

Abstract

Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conditions (C3H8:O2:He = 1:2.25:9) over the temperature range 450–650 °C. Morphological characteristics of the catalyst materials were varied by calcining at selected temperatures between 500 and 1,200 °C. X-ray diffraction and BET analysis showed the treatment generated catalyts metals with particle sizes in the range of <10 to >500 nm, and support surface areas in the range of 20–240 m2/g. Remarkably, both Rh and Pt yielded product compositions close to equilibrium values (with high H2 and CO selectivity, complete oxygen conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low, ≲10–15 nm. In cases where the particle size was large, primarily complete oxidation rather than partial oxidation products were observed, along with unreacted C3H8, indicative of a direct oxidation pathway in which gas-phase CO and H2 are not present as intermediate species. It is proposed that the high resistance of Rh to coarsening is largely responsible for the observation of a higher selectivity of this material for syngas products when prepared by procedures similar to those for Pt. Overall, the tunability of the product composition obtained over Rh and Pt via processing steps has direct significance for the incorporation of such catalyts into the anodes of solid oxide fuel cells.

Keywords

Pt/Al2O3 Rh/Al2O3 Propane partial oxidation Mental particle coarsening SOFC anode catalyst 

References

  1. 1.
    Tsang SC, Claridge JB, Green MLH (1995) Catal Today 23:3CrossRefGoogle Scholar
  2. 2.
    Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, Dubois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Chem Rev 101:953CrossRefGoogle Scholar
  3. 3.
    Song CS (2002) Catal Today 77:17CrossRefGoogle Scholar
  4. 4.
    Park SD, Vohs JM, Gorte RJ (2000) Nature 404:265CrossRefGoogle Scholar
  5. 5.
    Zhan ZL, Barnett SA (2005) Solid State Ionics 176:871CrossRefGoogle Scholar
  6. 6.
    Zhan ZL, Barnett SA (2005) Science 308:844CrossRefGoogle Scholar
  7. 7.
    Shao ZP, Kwak C, Haile SM (2004) Solid State Ionics 175:39CrossRefGoogle Scholar
  8. 8.
    Shao ZP, Haile SM (2004) Nature 431:170CrossRefGoogle Scholar
  9. 9.
    Acres GJK, Harrison B (2004) Top Catal 28:3CrossRefGoogle Scholar
  10. 10.
    Shao ZP, Mederos J, Chueh WC, Haile SM (2006) J Power Sources 168:589CrossRefGoogle Scholar
  11. 11.
    Posthill J, Reddy A, Siivola E, Krueger G, Mantini M, Thomas P, Venkatasubramanian R, Ochoa F, Ronney P (2005) In: 24th International Conference on Thermoelectrics (ICT), p 532Google Scholar
  12. 12.
    Shao ZP, Haile SM, Ahn J, Ronney PD, Zhan ZL, Barnett SA (2005) Nature 435:795CrossRefGoogle Scholar
  13. 13.
    Mhadeshwar AB, Vlachos DG (2005) J Phys Chem B 109:16819CrossRefGoogle Scholar
  14. 14.
    Aghalayam P, Park YK, Fernandes N, Papavassiliou V, Mhadeshwar AB, Vlachos DG (2003) J Catal 213:23CrossRefGoogle Scholar
  15. 15.
    Deutschmann O, Schwidernoch R, Maier LI, Chatterjee D (2001) Natural gas conversion in monolithic catalysts: interaction of chemical reactions and transport phenomena. In: Iglesia E, Spivey JJ, Fleisch, Natural TH (ed) Gas conversion VI. Studies in surface science and catalysis, Elsevier, Amsterdam, p 136Google Scholar
  16. 16.
    Quiceno R, Perez-Ramirez J, Warnatz J, Deutschmann O (2006) Appl Catal A-Gen 303:166CrossRefGoogle Scholar
  17. 17.
    Hickman DA, Schmidt LD (1993) AIChE J 39:1164CrossRefGoogle Scholar
  18. 18.
    Bharadwaj SS, Schmidt LD (1995) Fuel Proc Technol 42:109CrossRefGoogle Scholar
  19. 19.
    Horn R, Williams KA, Degenstein NJ, Schmidt LD (2006) J Catal 242:92CrossRefGoogle Scholar
  20. 20.
    Williams KA, Schmidt LD (2006) Appl Catal A-Gen 299:30CrossRefGoogle Scholar
  21. 21.
    Silberova B, Venvik HJ, Holmen A (2005) Catal Today 99:69CrossRefGoogle Scholar
  22. 22.
    Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K (2003) Appl Catal A-Gen 241:261CrossRefGoogle Scholar
  23. 23.
    Balakrishna A, Schmidt LD, Aris R (1994) Chem Eng Sci 49:11CrossRefGoogle Scholar
  24. 24.
    Solymosi F, Tolmacsov P (2002) Catal Lett 83:183CrossRefGoogle Scholar
  25. 25.
    Belton DN, Schmieg SJ (1988) Surf Sci 202:238CrossRefGoogle Scholar
  26. 26.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  27. 27.
    Hayashi K, Horiuchi T, Suzuki K, Mori T (2002) Catal Lett 78:43CrossRefGoogle Scholar
  28. 28.
    Silberova B, Venvik HJ, Walmsley JC, Holmen A (2005) Catal Today 100:457CrossRefGoogle Scholar
  29. 29.
    Torniainen PM, Chu X, Schmidt LD (1994) J Catal 146:1CrossRefGoogle Scholar
  30. 30.
    Horn R, Degenstein NJ, Williams KA, Schmidt LD (2006) Catal Lett 110:169CrossRefGoogle Scholar
  31. 31.
    Aartun I, Venvik HJ, Holmen A, Pfeifer P, Gorke O, Schubert K (2005) Catal Today 110:98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • William C. Chueh
    • 1
  • Zongping Shao
    • 1
    • 2
  • Sossina M. Haile
    • 1
  1. 1.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingP.R. China

Personalised recommendations