Topics in Catalysis

, Volume 46, Issue 3–4, pp 276–284 | Cite as

Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis

  • Anand Udaykumar Nilekar
  • Ye Xu
  • Junliang Zhang
  • Miomir B. Vukmirovic
  • Kotaro Sasaki
  • Radoslav R. Adzic
  • Manos Mavrikakis
Original Paper

Abstract

Using a combination of density functional theory (DFT) calculations and an array of experimental techniques including in situ X-ray absorption spectroscopy, we identified, synthesized, and tested successfully a new class of electrocatalysts for the oxygen reduction reaction (ORR) that were based on monolayers of Pt deposited on different late transition metals (Au, Pd, Ir, Rh, or Ru), of which the Pd-supported Pt monolayer had the highest ORR activity. The amount of Pt used was further decreased by replacing part of the Pt monolayer with a third late transition metal (Au, Pd, Ir, Rh, Ru, Re, or Os). Several of these mixed Pt monolayers deposited on Pd single crystal or on carbon-supported Pd nanoparticles exhibited up to a 20-fold increase in ORR activity on a Pt-mass basis when compared with conventional all-Pt electrocatalysts. DFT calculations showed that their superior activity originated from the interaction between the Pt monolayer and the Pd substrate and from a reduced OH coverage on Pt sites, the result of enhanced destabilization of Pt–OH induced by the oxygenated third metal. This new class of electrocatalysts promises to alleviate the major problems of existing fuel cell technology by simultaneously decreasing materials cost and enhancing performance.

Keywords

Density functional theory calculations Oxygen reduction reaction Platinum monolayer Fuel cells Electrocatalysis Cathode 

Notes

Acknowledgments

Work at UW-Madison was supported by DOE-BES and by S. C. Johnson through a fellowship to AUN. Supercomputing time at NERSC, CI, PNNL, and National Center for Computational Sciences (NCCS; provided through the INCITE program) resources is gratefully acknowledged. Work at BNL was supported by the Divisions of Chemical and Material Sciences, U.S. Department of Energy (Contract No. DE-AC02–98CH10886). Work at ORNL was conducted at the Center for Nanophase Materials Sciences, which is sponsored by the Division of Scientific User Facilities, U.S. Department of Energy. The NCCS at ORNL is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC05-00OR22725. AUN thanks Lars Grabow for his valuable help.

References

  1. 1.
    Vielstich W, Lamm A, Gasteiger H (2003) Handbook of fuel cells – fundamentals, technology and applications. Wiley, West SussexGoogle Scholar
  2. 2.
    Tarasevich MR, Sadkowski A, Yeager E (1983) Comprehensive treatise of electrochemistry. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Adzic RR (1998) In: Lipkowski J, Ross PN (eds), Frontiers in electrochemistry, p 197Google Scholar
  4. 4.
    Wang JX, Markovic NM, Adzic RR (2004) J Phys Chem B 108:4127CrossRefGoogle Scholar
  5. 5.
    Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) J Phys Chem B 108:10955CrossRefGoogle Scholar
  6. 6.
    Mukerjee S, Srinivasan S, Soriaga MP, Mcbreen J (1995) J Phys Chem B 99:4577CrossRefGoogle Scholar
  7. 7.
    Toda T, Igarashi H, Watanabe M (1999) J Electroanal Chem 460:258CrossRefGoogle Scholar
  8. 8.
    Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Electrochim Acta 47:3787CrossRefGoogle Scholar
  9. 9.
    Xu Y, Ruban AV, Mavrikakis M (2004) J Am Chem Soc 126:4717CrossRefGoogle Scholar
  10. 10.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886CrossRefGoogle Scholar
  11. 11.
    Shi Z, Zhang JJ, Liu ZS, Wang HJ, Wilkinson DP (2006) Electrochim Acta 51:1905CrossRefGoogle Scholar
  12. 12.
    Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Science 279:1913CrossRefGoogle Scholar
  13. 13.
    Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) J Am Chem Soc 123:8404CrossRefGoogle Scholar
  14. 14.
    Vang RT, Honkala K, Dahl S, Vestergaard EK, Schnadt J, Laegsgaard E, Clausen BS, Nørskov JK, Besenbacher F (2005) Nat Mater 4:160CrossRefGoogle Scholar
  15. 15.
    Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Angew Chem Int Ed 44:2132CrossRefGoogle Scholar
  16. 16.
    Zhang JL, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) J Am Chem Soc 127:12480CrossRefGoogle Scholar
  17. 17.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  18. 18.
    Greeley J, Nørskov JK, Mavrikakis M (2002) Ann Rev Phys Chem 53:319CrossRefGoogle Scholar
  19. 19.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  20. 20.
    Henkelman G, Jónsson H (2000) J Chem Phys 113:9978CrossRefGoogle Scholar
  21. 21.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, OrlandoGoogle Scholar
  22. 22.
    Brankovic SR, Wang JX, Adzic RR (2001) Surf Sci 474:L173CrossRefGoogle Scholar
  23. 23.
    Greeley J, Mavrikakis M (2004) Nat Mater 3:810CrossRefGoogle Scholar
  24. 24.
    Greeley J, Mavrikakis M (2006) Catal Today 111:52CrossRefGoogle Scholar
  25. 25.
    Schlapka A, Lischka M, Gross A, Kasberger U, Jakob P (2003) Phys Rev Lett 91:016101CrossRefGoogle Scholar
  26. 26.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801CrossRefGoogle Scholar
  27. 27.
    Kibler LA, El-Aziz AM, Hoyer R, Kolb DM (2005) Angew Chem Int Ed 44:2080CrossRefGoogle Scholar
  28. 28.
    Gross A (2006) Top Catal 37:29CrossRefGoogle Scholar
  29. 29.
    Markovic NM, Gasteiger HA, Grgur BN, Ross PN (1999) J Electroanal Chem 467:157CrossRefGoogle Scholar
  30. 30.
    Hammer B, Nørskov JK (2000) Adv Catal 45:71CrossRefGoogle Scholar
  31. 31.
    Mavrikakis M, Hammer B, Nørskov JK (1998) Phys Rev Lett 81:2819CrossRefGoogle Scholar
  32. 32.
    Clouser SJ, Huang JC, Yeager E (1993) J Appl Electrochem 23:597CrossRefGoogle Scholar
  33. 33.
    Anderson AB, Roques J, Mukerjee S, Murthi VS, Markovic NM, Stamenkovic V (2005) J Phys Chem B 109:1198CrossRefGoogle Scholar
  34. 34.
    Li X, Gewirth AA (2005) J Am Chem Soc 127:5252CrossRefGoogle Scholar
  35. 35.
    Wintterlin J, Zambelli T, Trost J, Greeley J, Mavrikakis M (2003) Angew Chem Int Ed 42:2850CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anand Udaykumar Nilekar
    • 1
  • Ye Xu
    • 2
  • Junliang Zhang
    • 3
  • Miomir B. Vukmirovic
    • 3
  • Kotaro Sasaki
    • 3
  • Radoslav R. Adzic
    • 3
  • Manos Mavrikakis
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Center for Nanophase Materials Sciences and Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Materials Science DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations