Topics in Catalysis

, Volume 46, Issue 3–4, pp 285–305 | Cite as

Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells

  • Y. Shao-HornEmail author
  • W. C. Sheng
  • S. Chen
  • P. J. Ferreira
  • E. F. Holby
  • D. Morgan
Original Paper


This paper discusses the mechanisms of surface area loss of supported platinum (Pt) electrocatalysts in low-temperature fuel cells. It is argued that submonolayer dissolution of Pt nanoparticles governs the surface area loss at high voltages by increasing the loss of Pt from carbon and coarsening of Pt nanoparticles on carbon.


Fuel cell Catalyst Platinum Nanoparticles Durability Dissolution Coarsening Crystal migration Transmission electron microscopy TEM Ostwald ripening Solubility Coalescence 



Some Pt/C and aged MEA samples used in this study were obtained from GM Fuel Cell Activities. The authors thank P. Strasser for providing the TKK Pt/C 28 wt% sample used in this study, and H.A. Gasteiger, R. Makharia, S. Kocha, F. Wagner, D. Myers, J.P. Meyers, R. Darling, and D. Rolison for stimulating discussion. This work is supported by the DOE Hydrogen Initiative program under award number DE-FG02-05ER15728, and made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award number DMR 02-13282. Y.S.H. acknowledges financial support from GM Fuel Cell Activities and an Air Products Faculty Excellence grant and D.M. gratefully acknowledges a 3M Nontenured Faculty Award.

Supplementary material

11244_2007_9000_MOESM1_ESM.pdf (1018 kb)
(PDF 1017 kb)


  1. 1.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9CrossRefGoogle Scholar
  2. 2.
    Gasteiger H, Gu W, Makharia R, Mathias MF, Sompalli B (2003) In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications, vol. 3. John Wiley & Sons, Chichester, UK, pp 593Google Scholar
  3. 3.
    Matthias M, Gasteiger H, Makharia R, Kocha S, Fuller T, Pisco (2004) J Prepr Pap-Am Chem Soc Div Fuel Chem 49:471Google Scholar
  4. 4.
    Antolini E (2003) J Mater Sci 38:2995CrossRefGoogle Scholar
  5. 5.
    Mukerjee S, Srinivasan S (2003) In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. John Wiley & Sons, Chichester, UK pp 503Google Scholar
  6. 6.
    Auer E, Freund A, Pietsch J, Tacke T (1998) Appl Catal A 173:259CrossRefGoogle Scholar
  7. 7.
    Skriver HL, Rosengaard NM (1992) Phys Rev B 46:7157CrossRefGoogle Scholar
  8. 8.
    Foiles SM, Baskes MI, Daw MS (1986) Phys Rev B 33:7983CrossRefGoogle Scholar
  9. 9.
    Frenken JWM, Stoltze P (1999) Phys Rev Lett 82:3500CrossRefGoogle Scholar
  10. 10.
    Sattler ML, Ross PN (1986) Ultramicroscopy 20:21CrossRefGoogle Scholar
  11. 11.
    Ferreira PJ, Shao-Horn Y (2007) Electrochem Solid-State Lett 10:B60CrossRefGoogle Scholar
  12. 12.
    Kinoshita K (1990) J Electrochem Soc 137:845CrossRefGoogle Scholar
  13. 13.
    Antolini E, Giorgi L, Cardellini F, Passalacqua E (2001) J Solid State Electrochem 5:131CrossRefGoogle Scholar
  14. 14.
    Markovic NM, Radmilovic V, Ross PN (2003) In: Wieckowski A, Savinova ER, Vayenas CG (eds) Physical and electrochemical characterization of bimetallic nanoparticles electrocatalysts, catalysis and electrocatalysis at nanoparticles surfaces. Marcel Dekker, New York and Basel, pp 311Google Scholar
  15. 15.
    Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger H (2005) J Electrochem Soc 152:A2256CrossRefGoogle Scholar
  16. 16.
    Shao-Horn Y, Ferreira P, la O GJ, Morgan D, Gasteiger HA, Makharia R (2006) ECS Trans 1:185CrossRefGoogle Scholar
  17. 17.
    Merzougui B, Swathirajan S (2006) J Electrochem Soc 153:A2220CrossRefGoogle Scholar
  18. 18.
    Landsman DA, Luczak FJ (2003) In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 4. John Wiley & Sons, Chichester, UK, pp 811Google Scholar
  19. 19.
    Aragane J, Murahashi T, Odaka T (1988) J Electrochem Soc 135:844CrossRefGoogle Scholar
  20. 20.
    Honji A, Mori T, Tamura K, Hishinuma Y (1988) J Electrochem Soc 135:355CrossRefGoogle Scholar
  21. 21.
    Blurton KF, Kunz HR, Rutt DR (1978) Electrochim Acta 23:183CrossRefGoogle Scholar
  22. 22.
    Fowler MW, Mann RF, Amphlett JC, Peppley BA, Roberge PR (2002) J Power Sources 106:274CrossRefGoogle Scholar
  23. 23.
    Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) J Power Sources 127:127CrossRefGoogle Scholar
  24. 24.
    Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S (1993) J Electrochem Soc 140:2872CrossRefGoogle Scholar
  25. 25.
    Tada T, Kikinzoku T (2003) In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. John Wiley and Sons, p 481Google Scholar
  26. 26.
    Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL (2005) J Electrochem Soc 152:A104CrossRefGoogle Scholar
  27. 27.
    Xie J, Wood DL, More KL, Atanassov P, Borup RL (2005) J Electrochem Soc 152:A1011CrossRefGoogle Scholar
  28. 28.
    Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K (2006) J Power Sources 159:461CrossRefGoogle Scholar
  29. 29.
    Bett JAS, Kinoshita K, Stonehart P (1976) J Catal 41:124CrossRefGoogle Scholar
  30. 30.
    Gruver GA, Pascoe RF, Kunz HR (1980) J Electrochem Soc 127:1219CrossRefGoogle Scholar
  31. 31.
    Ruckenstein E, Pulvermacher B (1973) J Catal 29:224CrossRefGoogle Scholar
  32. 32.
    Granqvist CC, Buhrman RA (1976) J Catal 42:477CrossRefGoogle Scholar
  33. 33.
    Tseung ACC, Vassie PR (1976) Electrochimica Acta 21:315CrossRefGoogle Scholar
  34. 34.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35CrossRefGoogle Scholar
  35. 35.
    Wagner C (1961) Z Elektrochem 65:581Google Scholar
  36. 36.
    Voorhees PW (1985) J Stat Phys 38:231CrossRefGoogle Scholar
  37. 37.
    Ross PN Jr (1987) In: Petersen EE, Bell AT (eds) Catalyst deactivation. Marcel Dekker, New York, p 165Google Scholar
  38. 38.
    Aragane J, Urushibata H, Murahashi T (1996) J Appl Electrochem 26:147CrossRefGoogle Scholar
  39. 39.
    Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) J Electrochem Soc 153:A1599CrossRefGoogle Scholar
  40. 40.
    Kinoshita K, Lundquis JT, Stonehar P (1973) J Electroanal Chem 48:157CrossRefGoogle Scholar
  41. 41.
    Patternson T (2002) In: Igwe GJ, Mah D (eds) Fuel cell technology topical conference proceedings, 2002 AIChE Spring National Meeting (March 10–14), New York, p 313Google Scholar
  42. 42.
    Darling RM, Meyers JP (2003) J Electrochem Soc 150:A1523CrossRefGoogle Scholar
  43. 43.
    Darling RM, Meyers JP (2005) J Electrochem Soc 152:A242CrossRefGoogle Scholar
  44. 44.
    Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Phys Chem Chem Phys 8:746CrossRefGoogle Scholar
  45. 45.
    Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, OxfordGoogle Scholar
  46. 46.
    Bindra P, Clouser SJ, Yeager E (1979) J Electrochem Soc 126:1631CrossRefGoogle Scholar
  47. 47.
    Wang XP, Kumar R, Myers DJ (2006) Electrochem Solid-State Lett 9:A225CrossRefGoogle Scholar
  48. 48.
    Ota K-i, Koizumi Y, Mitsushima S, Kamiya N (2006) ECS Trans 3:619CrossRefGoogle Scholar
  49. 49.
    Bett JA, Kinoshita K, Stonehart P (1974) J Catal 35:307CrossRefGoogle Scholar
  50. 50.
    Makharia R, Kocha SS, Yu PT, Sweikart MA, Gu W, Wagner FT, Gasteiger HA (2006) ECS Trans 1:3CrossRefGoogle Scholar
  51. 51.
    Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) J Electrochem Soc 152:A2309CrossRefGoogle Scholar
  52. 52.
    Wynblatt P, Gjostein NA (1975) In: McCaldin JO, Somorjai G (eds) Progress in solid state chemistry, vol 9. Pergamon, New York pp 21Google Scholar
  53. 53.
    Ehrburger P, Lahaye J (1984) Abstr Paper Am Chem Soc 187:28Google Scholar
  54. 54.
    Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M (2007) J Electrochem Soc 154:B96CrossRefGoogle Scholar
  55. 55.
    Chen J, Chan KY (2005) Mol Simul 31:527CrossRefGoogle Scholar
  56. 56.
    Phillips WB, Desloge EA, Skofronick JG (1968) J Appl Phys 39:3210CrossRefGoogle Scholar
  57. 57.
    Jensen P, Blase X (2004) Phys Rev B 70:165402 Google Scholar
  58. 58.
    Wang XP, Kumar R, Kariuki N, Myers DJ (2007) J Electrochem Soc (unpublished)Google Scholar
  59. 59.
    Anderson GM, Crerar DA (1993) Thermodynamics in geochemistry. Oxford University Press, New YorkGoogle Scholar
  60. 60.
    Komanicky V, Chang KC, Menzel A, Markovic NM, You H, Wang X, Myers D (2006) J Electrochem Soc 153:B446CrossRefGoogle Scholar
  61. 61.
    Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park YS (2004) Electrochimica Acta 49:1451Google Scholar
  62. 62.
    Alsabet M, Grden M, Jerkiewicz G (2006) J Electroanal Chem 589:120CrossRefGoogle Scholar
  63. 63.
    Ota KI, Nishigori S, Kamiya N (1988) J Electroanal Chem 257:205CrossRefGoogle Scholar
  64. 64.
    Rand DAJ, Woods R (1972) J Electroanal Chem 35:209CrossRefGoogle Scholar
  65. 65.
    Rose TL, Robblee LS (1990) IEEE Trans Biomed Eng 37:1118CrossRefGoogle Scholar
  66. 66.
    Woods R (1976) In: Bard AJ (eds) Electroanalytical chemistry, vol 9. Marcel Dekker, New York pp 1Google Scholar
  67. 67.
    Angerste H, Conway BE, Sharp WBA (1973) J Electroanal Chem 43:9CrossRefGoogle Scholar
  68. 68.
    Allen GC, Tucker PM, Capon A, Parsons R (1974) J Electroanal Chem 50:335CrossRefGoogle Scholar
  69. 69.
    Hammond JS, Winograd N (1977) J Electroanal Chem 78:55CrossRefGoogle Scholar
  70. 70.
    Nagy Z, You H (2002) Electrochim Acta 47:3037CrossRefGoogle Scholar
  71. 71.
    Lupis CHP (1983) Chemical thermodynamics of materials. North Holland, New YorkGoogle Scholar
  72. 72.
    Holby E, Morgan D, Shao-Horn Y (2007) (unpublished) Google Scholar
  73. 73.
    Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Science 315:220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Y. Shao-Horn
    • 1
    Email author
  • W. C. Sheng
    • 2
  • S. Chen
    • 1
  • P. J. Ferreira
    • 3
  • E. F. Holby
    • 4
  • D. Morgan
    • 4
  1. 1.Electrochemical Energy Laboratory, Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Electrochemical Energy Laboratory, Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Materials Science and Engineering ProgramUniversity of Texas at AustinAustinUSA
  4. 4.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations