Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Comparison of gold supported catalysts obtained by using different allotropic forms of titanium dioxide

  • 165 Accesses

  • 25 Citations

Gold catalysts were prepared on different allotropic phases of TiO2 using the colloidal deposition method. The supports were chosen in order to study the influence of the support structure on the catalytic activity of the final material. Furthermore, for the same allotropic modification of titania, materials with a different particle size distributions have been used to study the influence of the grain size of the support on the deposition of the colloid. Our results indicate that the activity of the final catalyst is not much affected by the variation of the titania structure, though the situation becomes different when the catalyst is calcined at different temperatures. In this case, pure anatase and rutile supported catalysts showed a lower thermostability than the one prepared using P25 titanium oxide (Degussa). Concerning the colloid immobilization on the support it was found that the most important parameter is the grain size of the support. In particular, the deposition of the colloidal gold particles is greatly enhanced in the case of supports composed of particles of few nanometers in size.

This is a preview of subscription content, log in to check access.

References

  1. 1

    M. Haruta T. Kobayashi H. Sano N. Yamada (1987) Chem. Lett. 16 405 Occurrence Handle10.1246/cl.1987.405

  2. 2

    M. Haruta, Catal. Today 36 (1997) 153, and references therein

  3. 3

    M. Haruta S. Tsubota T. Kobayashi H. Kageyama M.J. Genet B. Delmon (1993) J. Catal. 144 175 Occurrence Handle10.1006/jcat.1993.1322 Occurrence Handle1:CAS:528:DyaK2cXhs1GitQ%3D%3D

  4. 4

    C.K. Costello M.C. Kung H.-S. Oh Y. Wang H.H. Kung (2002) Appl. Catal. A 232 159 Occurrence Handle10.1016/S0926-860X(02)00092-3 Occurrence Handle1:CAS:528:DC%2BD38Xkt1Wnsrg%3D

  5. 5

    A. Wolf F. Schüth (2002) Appl. Catal. A 226 1 Occurrence Handle10.1016/S0926-860X(01)00772-4 Occurrence Handle1:CAS:528:DC%2BD38XhtFyrur0%3D

  6. 6

    J. Guzman B.C. Gates (2004) J. Am. Chem. Soc. 126 2672 Occurrence Handle14995163 Occurrence Handle10.1021/ja039426e Occurrence Handle1:CAS:528:DC%2BD2cXht1Wisbk%3D

  7. 7

    S.T. Daniells A.R. Overweg M. Makkee J.A. Moulijn (2005) J. Catal. 230 52 Occurrence Handle10.1016/j.jcat.2004.11.020 Occurrence Handle1:CAS:528:DC%2BD2MXht1Kqu7o%3D

  8. 8

    W.S. Epling G.B. Hoflund J.F. Weaver S. Tsubota M. Haruta (1996) J. Phys. Chem. 100 9929 Occurrence Handle10.1021/jp960593t Occurrence Handle1:CAS:528:DyaK28XivFynurY%3D

  9. 9

    G.C. Bond D.T. Thompson (1999) Catal. Rev.-Sci.Eng. 41 319 Occurrence Handle10.1081/CR-100101171 Occurrence Handle1:CAS:528:DyaK1MXmvFehsLk%3D

  10. 10

    M.M. Schubert S. Hackenberg A.C. Van Veen M. Muhler V. Plzak R.J. Behm (2001) J. Catal. 197 113 Occurrence Handle10.1006/jcat.2000.3069 Occurrence Handle1:CAS:528:DC%2BD3cXptVGntbg%3D

  11. 11

    M. Comotti C. Della Pina R. Matarrese M. Rossi (2004) Angew. Chem. Int. Ed. 43 5812 Occurrence Handle10.1002/anie.200460446 Occurrence Handle1:CAS:528:DC%2BD2cXhtVejt7vJ

  12. 12

    M. Comotti W.-C. Li B. Spliethoff F. Schüth (2006) J. Am. Chem. Soc. 128 917 Occurrence Handle16417382 Occurrence Handle10.1021/ja0561441 Occurrence Handle1:CAS:528:DC%2BD2MXhtlCgsrzO

  13. 13

    G.V. Samonsov (1982) The Oxide Handbook IFI/Plenum New York

  14. 14

    G. Rigel J.R. Bolton (1995) J. Phys. Chem. 99 4215 Occurrence Handle10.1021/j100012a050

  15. 15

    E. Borgarello J. Kiwi E. Pelizzetti M. Visca M. Gratzel (1981) J. Am. Chem. Soc. 103 6326 Occurrence Handle10.1021/ja00411a010

  16. 16

    D.C. Harum A.G. Agrios K.A. Gray M.C. Thurnauer (2003) J. Phys. Chem. B 107 4545 Occurrence Handle10.1021/jp0273934 Occurrence Handle1:CAS:528:DC%2BD3sXjtVWnsrg%3D

  17. 17

    S.D. Mo W.Y. Ching (1995) Phys. Rev. B 51 13023 Occurrence Handle10.1103/PhysRevB.51.13023 Occurrence Handle1:CAS:528:DyaK2MXlvVGrtLY%3D Occurrence Handle1995PhRvB..5113023M

  18. 18

    M. Haruta B.S. Uphade S. Tsubota A. Miyamoto (1998) Res. Chem. Inter. 24 329 Occurrence Handle1:CAS:528:DyaK1cXit1ygt70%3D Occurrence Handle10.1163/156856798X00276

  19. 19

    K. Fukushima G.H. Takaoka J. Matsuo I. Yamada (1997) Jpn. J. Appl. Phys. Part 1 36 813 Occurrence Handle10.1143/JJAP.36.813 Occurrence Handle1:CAS:528:DyaK2sXhslKjtbY%3D

  20. 20

    S. Biella F. Porta L. Prati M. Rossi (2003) Catal. Lett. 90 23 Occurrence Handle10.1023/A:1025808024943 Occurrence Handle1:CAS:528:DC%2BD3sXnsFShu70%3D

  21. 21

    M. Comotti C. Della Pina R. Matarrese M. Rossi A. Siani (2005) Appl. Catal. A: Gen 291 204 Occurrence Handle10.1016/j.apcata.2004.11.051 Occurrence Handle1:CAS:528:DC%2BD2MXosVWqu7c%3D

  22. 22

    E.D. Park J.S. Lee (1999) J. Catal. 186 1 Occurrence Handle10.1006/jcat.1999.2531 Occurrence Handle1:CAS:528:DyaK1MXls1eitrY%3D

  23. 23

    A.M. Visco F. Neri G. Neri A. Donato C. Milone S. Galvagno (1999) Phys. Chem. Chem. Phys. 1 2869 Occurrence Handle10.1039/a900838a Occurrence Handle1:CAS:528:DyaK1MXktlelsbg%3D

  24. 24

    C. Perego S. Peratello (1999) Catal. Today 52 133 Occurrence Handle10.1016/S0920-5861(99)00071-1 Occurrence Handle1:CAS:528:DyaK1MXmtVOrs7Y%3D

  25. 25

    N. Lopez J.K. Nørskov T.V.W. Janssens A. Carlsson A. Puig-Molina B.S. Calusen J.D. Grunwaldt (2004) J. Catal. 225 86 Occurrence Handle10.1016/j.jcat.2004.03.036 Occurrence Handle1:CAS:528:DC%2BD2cXksVantr0%3D

  26. 26

    W.-C. Li M. Comotti F. Schüth (2006) J. Catal. 237 190 Occurrence Handle10.1016/j.jcat.2005.11.006 Occurrence Handle1:CAS:528:DC%2BD2MXht12itrzK

  27. 27

    F. Moreau G.C. Bond A.O. Taylor (2005) J. Catal. 231 105 Occurrence Handle10.1016/j.jcat.2005.01.030 Occurrence Handle1:CAS:528:DC%2BD2MXisFyitb0%3D

  28. 28

    F. Moreau G.C. Bond (2006) Appl. Catal. A: Gen 302 110 Occurrence Handle10.1016/j.apcata.2005.12.031 Occurrence Handle1:CAS:528:DC%2BD28XitVaktLg%3D

  29. 29

    Y. Zheng E. Shi S. Cui W. Li X. Hu (2000) J. Mat. Sci. Lett. 19 1445 Occurrence Handle10.1023/A:1011010306699

  30. 30

    W. Yan, C. Bei, S.M. Mahurin, S.D. Dai and S.H. Overbury, Chem Commun. (2004) 1918

  31. 31

    R.I. Bickley T. Gonzales-Carreno J.S. Lees L. Palmisano R.J.D. Tilley (1991) J. Solid State Chem. 92 178 Occurrence Handle10.1016/0022-4596(91)90255-G Occurrence Handle1:CAS:528:DyaK3MXktlyns70%3D Occurrence Handle1991JSSCh..92..178B

  32. 32

    W. Yan B. Chen S.M. Mahurin V. Schwartz D.R. Mullins A.R. Lupini S.J. Pennycook S. Dai S.H. Overbury (2005) J. Phys. Chem. B 109 10676 Occurrence Handle16852296 Occurrence Handle10.1021/jp044091o Occurrence Handle1:CAS:528:DC%2BD2MXjvFWgsb8%3D

  33. 33

    S. Arrii F. Morfin A.J. Renouprez J.L. Rousset (2004) J. Am. Chem. Soc. 126 1199 Occurrence Handle14746491 Occurrence Handle10.1021/ja036352y Occurrence Handle1:CAS:528:DC%2BD2cXkvVKlsw%3D%3D

  34. 34

    S. Schimpf M. Lucas C. Mohr U. Rodemerck A. Brückner J. Radnik H. Hofmeister P. Claus (2002) Catal. Today 72 63 Occurrence Handle10.1016/S0920-5861(01)00479-5 Occurrence Handle1:CAS:528:DC%2BD38XisV2jtLc%3D

  35. 35

    J. Radnik C. Mohr P. Claus (2003) Phys. Chem. Chem. Phys. 5 172 Occurrence Handle10.1039/b207290d Occurrence Handle1:CAS:528:DC%2BD38XpsVGktb8%3D

Download references

Author information

Correspondence to Ferdi Schüth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Comotti, M., Weidenthaler, C., Li, W. et al. Comparison of gold supported catalysts obtained by using different allotropic forms of titanium dioxide. Top Catal 44, 275–284 (2007). https://doi.org/10.1007/s11244-007-0300-1

Download citation

Keywords

  • gold catalysts
  • CO oxidation
  • anatase
  • rutile
  • colloidal deposition