Topics in Catalysis

, Volume 44, Issue 1–2, pp 123–128 | Cite as

Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation

  • Saleh Al-Sayari
  • Albert F. Carley
  • Stuart H. Taylor
  • Graham J. HutchingsEmail author

The preparation of Au/ZnO and Au/Fe2O3 catalysts using two coprecipitation methods is investigated to determine the important factors that control the synthesis of high activity catalysts for the oxidation of carbon monoxide at ambient temperature. In particular, the factors involved in the preparation of catalysts that are active without the need for a calcination step are evaluated. The two preparation methods differ in the manner in which the pH is controlled during the precipitation, either constant pH throughout or variable pH in which the pH is raised from an initial low value to a defined end point. Non-calcined Au/ZnO catalysts prepared using both methods are very sensitive to pH and ageing time, and catalysts prepared at a maximum pH = 5 with a short ageing time (ca. 0–3 h) exhibit high activity. Catalysts prepared at higher pH give lower activity. However, all catalysts require a short operation period during which the oxidation activity increases. In contrast, the calcined catalysts are not particularly sensitive to the preparation conditions. Non-calcined Au/Fe2O3 catalysts exhibit high activity when prepared at pH ≥ 5. Calcined Au/Fe2O3 prepared using the controlled pH method retain high activity, whereas calcined catalysts prepared using the variable pH method are inactive. The study shows the immense sensitivity of the catalyst performance to the preparation methods. It is therefore not surprising that marked differences in the performance of supported Au catalysts for CO oxidation that are apparent in the extensive literature on this subject, particularly the effect of calcination, can be expected if the preparation parameters are not carefully controlled and reported.


gold catalysis gold catalyst preparation co-precipitation iron oxide zinc oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bond, G.C., Thompson, D.T. 1999Catal. Rev.-Sci. Eng.41319CrossRefGoogle Scholar
  2. 2.
    Bond, G.C., Thompson, D.T. 2000Gold Bull.332Google Scholar
  3. 3.
    Hashi, A.S.K., Hutchings, G.J. 2006Angew. Chem., Int. Ed.457896CrossRefGoogle Scholar
  4. 4.
    Date, M., Y.Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M. 2002Catal. Today7289CrossRefGoogle Scholar
  5. 5.
    Lee, S., Gavriilidis, A., Pankhurst, Q.A., Kyek, A., Wagner, F.E., Wong, P.C.L., Yeung, K.L. 2001J. Catal.200298CrossRefGoogle Scholar
  6. 6.
    Bailie, J.E., Abdullah, H.A., Anderson, J.A., Rochester, C.H., Richardson, N.V., Hodge, N., Zhang, J.-G., Burrows, A., Kiely, C.J., Hutchings, G.J. 2001Phys. Chem. Chem. Phys.34113CrossRefGoogle Scholar
  7. 7.
    Hodge, N.A., Kiely, C.J., Whyman, R., Siddiqui, M.R.H., Hutchings, G.J., Pankhurst, Q.A., Wagner, F.E., Rajaram, R.R., Golunski, S.E. 2002Catal. Today72133CrossRefGoogle Scholar
  8. 8.
    Cortie, M., Holliday, R., Laguna, A., Nieuwenhuys, B., Thompson, D.T. 2003Gold Bull.36144Google Scholar
  9. 9.
    Visco, A.M., Neri, F., Neri, G., Donato, A., Milone, C., Galvagno, S. 1999Phys. Chem. Chem. Phys.12869CrossRefGoogle Scholar
  10. 10.
    Chen, Y.J., Yeh, C.T. 2001J. Catal.20059CrossRefGoogle Scholar
  11. 11.
    Fu, Q., Weber, A., Flytzani-Stephanopoulos, M. 2001Catal. Lett.7787CrossRefGoogle Scholar
  12. 12.
    Fu, Q., Kudriavtseva, S., Saltsburg, H., Flytzani-Stephanopoulos, M. 2003Chem. Eng. J.9341CrossRefGoogle Scholar
  13. 13.
    Schimpf, S., Lucas, M., Mohr, C., Rodermerck, U., Bruckner, A., Radnik, J., Hofmeister, H., Claus, P. 2002Catal. Today7263CrossRefGoogle Scholar
  14. 14.
    Okumura, M., Akita, T., Haruta, M. 2002Catal. Today74265CrossRefGoogle Scholar
  15. 15.
    Moreau, F., Bond, G.C., Taylor, A.O. 2005J. Catal.231105CrossRefGoogle Scholar
  16. 16.
    Hutchings, G.J., Hall, M.S., Carley, A.F., Landon, P., Solsona, B.E., Kiely, C.J., Herzing, A., Makkee, M., Moulijn, J.A., Overweg, A, Carlos Fierro-Gonzalez, J., Guzman, J., Gates, B.C. 2006J. Catal.24271CrossRefGoogle Scholar
  17. 17.
    Landon, P., Ferguson, J., Solsona, B.E., Garcia, T., Al-Sayari, S., Carley, A.F., Herzing, A., Kiely, C.J., Makkee, M., Moulijn, J.A., Overweg, A., Golunski, S.E., Hutchings, G.J. 2006J. Mat. Chem.16199CrossRefGoogle Scholar
  18. 18.
    G.J. Hutchings and J.C. Vedrine, Heterogeneous catalyst preparation. Springer Series in Chemical Physics (Basic Principles in Applied Catalysis), 75 (2004) 217Google Scholar
  19. 19.
    Hutchings, G.H., Sideiqi, M.R.H., Burrows, A., Kiely, C.J., Whyman, R. 1997J. Chem. Soc. Faraday Trans93187CrossRefGoogle Scholar
  20. 20.
    Whittle, D.M., Mirzaei, A.A., Hargreaves, J.S.J., Joyner, R.W., Kiely, C.J., Taylor, S.H., Hutchings, G.J. 2002Phys. Chem. Chem. Phys.45915CrossRefGoogle Scholar
  21. 21.
    Hutchings, G.J., Mirazei, A.A., Joyner, R.W., Siddiqui, M.R.H., Taylor, S.H. 1996Catal. Lett.4221CrossRefGoogle Scholar
  22. 22.
    Mirzaei, A.A., Shaterian, H.R., Joyner, R.W., Stockenhuber, M., Taylor, S.H., Hutchings, G.J. 2003Catal. Commun.417CrossRefGoogle Scholar
  23. 23.
    Daté, M., Okumura, M., Tsubota, S., Haruta, M. 2004Angew. Chem. Int. Ed.432129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Saleh Al-Sayari
    • 1
  • Albert F. Carley
    • 1
  • Stuart H. Taylor
    • 1
  • Graham J. Hutchings
    • 1
    Email author
  1. 1.Department of ChemistryCardiff UniversityCardiff

Personalised recommendations