Topics in Catalysis

, Volume 44, Issue 1–2, pp 3–13 | Cite as

Reactivity and sintering kinetics of Au/TiO2(110) model catalysts: particle size effects

We review here our studies of the reactivity and sintering kinetics of model catalysts consisting of gold nanoparticles dispersed on TiO2(110). First, the nucleation and growth of vapor-deposited gold on this surface was experimentally examined using x-ray photoelectron spectroscopy and low energy ion scattering. Gold initially grows as two-dimensional islands up to a critical coverage, θcr, after which 3D gold nanoparticles grow. The results at different temperatures are fitted well with a kinetic model, which includes various energetic parameters for Au adatom migration. Oxygen was dosed onto the resulting gold nanoparticles using a hot filament technique. The desorption energy of Oa was examined using temperature programmed desorption (TPD). The Oa is bonded ~40% more strongly to smaller (thinner) Au islands. Gaseous CO reacts rapidly with this Oa to make CO2, probably via adsorbed CO. The reactivity of Oa with CO increases with increasing particle size, as expected based on Brønsted relations. Propene adsorption leads to TPD peaks for three different molecularly adsorbed states on Au/TiO2(110), corresponding to propene adsorbed on gold islands, to Ti sites on the substrate, and to the perimeter of gold islands, with adsorption energies of 40, 52 and 73 kJ/mol, respectively. Thermal sintering of the gold nanoparticles was explored using temperature-programmed low-energy ion scattering. These sintering rates for a range of Au loadings at temperatures from 200 to 700 K were well fitted by a theoretical model which takes into consideration the dramatic effect of particle size on metal chemical potential using a modified bond additivity model. When extrapolated to simulate isothermal sintering at 700 K for 1 year, the resulting particle size distribution becomes very narrow. These results question claims that the shape of particle size distributions reveal their sintering mechanisms. They also suggest why the growth of colloidal nanoparticles in liquid solutions can result in very narrow particle size distributions.

Keywords

Catalysis gold TiO2 sintering nanoparticles particle growth selective oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haruta, M. 1997Catal. Today36153CrossRefGoogle Scholar
  2. 2.
    Hayashi, T., Tanaka, K., Haruta, M. 1998J. Catal.178566CrossRefGoogle Scholar
  3. 3.
    Haruta, M. 2002Cattech6102CrossRefGoogle Scholar
  4. 4.
    Valden, M., Lai, X., Goodman, D.W. 1998Science2811647PubMedCrossRefADSGoogle Scholar
  5. 5.
    Valden, M., Pak, S., Lai, X., Goodman, D.W. 1998Catal. Lett.567CrossRefGoogle Scholar
  6. 6.
    Chen, M.S., Goodman, D.W. 2004Science300252CrossRefGoogle Scholar
  7. 7.
    Goodman, D.W. 2005Catal. Lett.991CrossRefGoogle Scholar
  8. 8.
    Lee, S.S., Fan, C.Y., Wu, T.P., Anderson, S.L. 2004J. Am. Chem. Soc.1265682PubMedCrossRefGoogle Scholar
  9. 9.
    Lee, S., Fan, C.Y., Wu, T.P., Anderson, S.L. 2005Surface Sci.5785CrossRefADSGoogle Scholar
  10. 10.
    Campbell, C.T. 1997Surface Sci. Reports2271CrossRefGoogle Scholar
  11. 11.
    Campbell, C.T., Grant, A.W., Starr, D.E., Parker, S.C., Bondzie, V.E. 2000Topics Catal.1443CrossRefGoogle Scholar
  12. 12.
    Freund, H.J., Baumer, M., Kuhlenbeck, H. 2000Adv. Catal.45333CrossRefGoogle Scholar
  13. 13.
    Henry, C.R. 1998Surface Sci. Reports31231CrossRefGoogle Scholar
  14. 14.
    Sanchez, A., Abbet, S., Heiz, U., Schneider, W.D., Hakkinen, H., Barnett, R.N., Landman, U. 1999J. Phys. Chem. A1039573CrossRefGoogle Scholar
  15. 15.
    Heiz, U., Vanolli, F., Sanchez, A., Schneider, W.D. 1998J. Am. Chem. Soc.1209668CrossRefGoogle Scholar
  16. 16.
    Heiz, U., Bullock, E.L. 2004J. Mat. Chem.14564CrossRefGoogle Scholar
  17. 17.
    Parker, S.C., Grant, A.W., Bondzie, V.A., Campbell, C.T. 1999Surface Sci.44110CrossRefGoogle Scholar
  18. 18.
    Bondzie, V., Parker, S.C., Campbell, C.T. 1999J. Vac. Sci. Technol.A171717ADSGoogle Scholar
  19. 19.
    Bondzie, V., Parker, S.C., Campbell, C.T. 1999Catal Lett.63143CrossRefGoogle Scholar
  20. 20.
    Ajo, H.M., Bondzie, V.A., Campbell, C.T. 2002Catal. Lett.78359CrossRefGoogle Scholar
  21. 21.
    Campbell, C.T., Parker, S.C., Starr, D.E 2002Science298811PubMedCrossRefADSGoogle Scholar
  22. 22.
    Parker, S.C., Campbell, C.T. 2007Phys. Rev. B.75035430CrossRefADSGoogle Scholar
  23. 23.
    Sault, A., Madix, R.J., Campbell, C.T. 1986Surf. Sci.169347CrossRefGoogle Scholar
  24. 24.
    Canning, N.D.S., Outka, D., Madix, R.J. 1984Surface Sci.141240CrossRefGoogle Scholar
  25. 25.
    Bollinger, M.A., Vannice, M.A. 1996Appl. Catal. B-Environ.8417CrossRefGoogle Scholar
  26. 26.
    Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M.J., Delmon, B. 1993J. Catal.144175CrossRefGoogle Scholar
  27. 27.
    Redhead, P.A. 1962Vacuum12203CrossRefGoogle Scholar
  28. 28.
    Tait, S.L., Dohnálek, Z., Campbell, C.T., Kay, B.D. 2005J. Chem. Phys.122164708PubMedCrossRefGoogle Scholar
  29. 29.
    Tait, S.L., Dohnálek, Z., Campbell, C.T., Kay, B.D. 2006J. Chem. Phys.125234308PubMedCrossRefGoogle Scholar
  30. 30.
    P. Wynblatt and N.A. Gjostein, in: Progress in Solid State Chemistry, Vol. 9, eds. J.O. McCaldin and G. A. Somorjai (Elsevier Science, Amsterdam 1975) p. 21Google Scholar
  31. 31.
    McVicker, G.B., Garten, R.L., Baker, R.T. 1978J. Catal.54129CrossRefGoogle Scholar
  32. 32.
    G.A. Fuentes and E.-R. Salinas, in: Catalyst Deactivation, eds. C.H. Bartholomew and G.A. Fuentes (Elsevier Science, 1997), p. 573Google Scholar
  33. 33.
    Lai, X., Goodman, D.W. 2000J. Mol. Catal. A16233CrossRefGoogle Scholar
  34. 34.
    Mitchell, C.E.J., Howard, A., Carney, M., Egdell, R.G. 2001Surface Sci.490196CrossRefGoogle Scholar
  35. 35.
    Kolmakov, A., Goodman, D.W. 2000Catalysis Lett.7093CrossRefGoogle Scholar
  36. 36.
    Kielbassa, S., Kinne, M., Behm, R.J. 2004J. Phys. Chem. B10819184CrossRefGoogle Scholar
  37. 37.
    Sykes, E.C.H., Williams, F.J., Tikhov, M.S., Lambert, R.M. 2002J. Phys. Chem. B1065390CrossRefGoogle Scholar
  38. 38.
    Kolmakov, A., Goodman, D.W. 2002Chem. Record2446CrossRefGoogle Scholar
  39. 39.
    Okazawa, T., Fujiwara, M., Nishimura, T., Akita, T., Kohyama, M., Kido, Y. 2006Surface Sci.6001331CrossRefADSGoogle Scholar
  40. 40.
    Maeda, Y., Fujitani, T., Tsubota, S., Haruta, M. 2004Surface Sci.5621CrossRefADSGoogle Scholar
  41. 41.
    Granqvist, C.G., Buhrman, R.A. 1975Appl. Phys. Lett.27693CrossRefADSGoogle Scholar
  42. 42.
    Granqvist, C.G., Buhrman, R.A. 1976J. Catal.42477CrossRefGoogle Scholar
  43. 43.
    Sehested, J., Carlsson, A., Janssens, T.V.W., Hansen, P.L., Datye, A.K. 2001J. Catal.197200CrossRefGoogle Scholar
  44. 44.
    Datye, A.K., Xu, Q., Kharas, K.C., McCarty, J.M. 2006Catal. Today11159CrossRefGoogle Scholar
  45. 45.
    Talapin, D.V., Rogach, A.L., Haase, M., Weller, H. 2001J. Phys. Chem. B10512278CrossRefGoogle Scholar
  46. 46.
    Rogach, A.L., Talapin, D.V., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H. 2002Adv. Functional Mat.12653CrossRefGoogle Scholar
  47. 47.
    Wynblatt, P., Betta, R.A.D., Gjostein, N.A. 1975Drauglis, E.Jaffee, R.I. eds. The Physical Basis for Heterogeneous CatalysisPlenum PressNew York501Google Scholar
  48. 48.
    Wynblatt, P., Gjostein, N.A. 1976Acta Metallurgica241165CrossRefGoogle Scholar
  49. 49.
    Jak, M.J., Konstapel, C., Kreuningen, A.v, Crost, J., Verhoeven, J., Frenken, J.W. 2001Surface Sci.47428CrossRefGoogle Scholar
  50. 50.
    Jak, M.J., Konstapel, C., Kreuningen, A.v, Verhoeven, J., Frenken, J.W. 2000Surface Sci.457259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics and AstronomyCarleton CollegeNorthfieldUSA
  2. 2.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations