Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Epoxidation of indene and cyclooctene on nanocrystalline anatase titania catalyst

  • 111 Accesses

  • 7 Citations

Nanocrystalline anatase titania samples of different crystallite sizes were prepared by sol gel method using ultrasonication and calcination at different temperatures. The calcined samples were treated with H2O2 in order to study the role of surface hydroxyl groups present on titania in generating reactive oxygen species responsible for the epoxidation reaction. The crystallite size of the calcined samples increased from 4 to 18 nm as the calcination temperature increased from 473 to 773 K, respectively. More uniform distribution/dispersion of the nanoparticles (SEM), marginally higher surface area, better thermal stability and phase purity are some of the advantages of preparation of nanocrystalline TiO2 by using ultrasonication. EPR spectral data on the H2O2-treated samples confirmed the presence of superoxide radical species. The two distinct UV bands observed at 400 and 450 nm are assigned to charge transfer of peroxide (O 2 2− ) to Ti. FT-IR spectral data show that the surface hydroxyl groups are the active sites in the generation of reactive oxygen species. The catalytic activity was evaluated in a series of epoxidation reactions using indene and cyclooctene as substrates and aqueous H2O2 as oxidant. The activity was found to decrease with increase in the calcination temperature of the samples, obviously due to an increase in crystallite size and a decrease in surface hydroxyl groups. The nanoparticle titania samples show better conversion and selectivity than the standard titania (Degussa P-25). The kinetic studies revealed that the reaction followed a pseudo first order kinetics in excess of H2O2.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    P. Tengvall H. Elwing L. Sjogvist I. Lundstroem M. Bjursten (1989) Biomaterials 10 118 Occurrence Handle1:CAS:528:DyaL1MXhvF2itrs%3D Occurrence Handle10.1016/0142-9612(89)90043-4

  2. [2]

    J Ragai (1987) Nature 325 703 Occurrence Handle1:CAS:528:DyaL2sXhsVygu7Y%3D Occurrence Handle10.1038/325703a0

  3. [3]

    P. Tengvall B. Wälivaara J. Westerling I. Lundström (1991) J. Colloid Interface Sci. 143 589 Occurrence Handle1:CAS:528:DyaK3MXhvFegtr4%3D Occurrence Handle10.1016/0021-9797(91)90291-F

  4. [4]

    G.K. Dewkar M.D. Nikalje I.S. Ali A.S. Paraskar H.S. Jagtap A. Sudalai (2001) Angew Chem. Int. Ed. 40 405 Occurrence Handle1:CAS:528:DC%2BD3MXoslansQ%3D%3D Occurrence Handle10.1002/1521-3773(20010119)40:2<405::AID-ANIE405>3.0.CO;2-6

  5. [5]

    H. Goto Y. Hanada T. Ohno M. Matsumura (2004) J. Catal. 225 223 Occurrence Handle1:CAS:528:DC%2BD2cXksVant7g%3D Occurrence Handle10.1016/j.jcat.2004.04.001

  6. [6]

    E. Kanezaki T. Sakamoto A. Ookubo K. Ooi (1992) J. Chem. Soc. Faraday Trans. 88 3583 Occurrence Handle1:CAS:528:DyaK3sXhtVCrsLg%3D Occurrence Handle10.1039/ft9928803583

  7. [7]

    D. Srinivas P. Manikandan S.C. Laha R. Kumar P. Ratnasamy (2003) J. Catal. 217 160 Occurrence Handle1:CAS:528:DC%2BD3sXktVGqurg%3D

  8. [8]

    V.N. Shetti P. Manikandan D. Srinivas P. Ratnasamy (2003) J. Catal. 216 461 Occurrence Handle1:CAS:528:DC%2BD3sXjvVCmsr8%3D Occurrence Handle10.1016/S0021-9517(02)00119-7

  9. [9]

    K. Chaudhari D. Srinivas P. Ratnasamy (2001) J. Catal. 203 25 Occurrence Handle1:CAS:528:DC%2BD3MXntlWrsbk%3D Occurrence Handle10.1006/jcat.2001.3315

  10. [10]

    G. Klissurski K. Hadjiivanov M. Kancheva L. Gyurova (1990) J. Chem. Soc. Faraday Trans. 86 385 Occurrence Handle10.1039/ft9908600385

  11. [11]

    U. Diebold (2003) Surf. Sci. Report 48 53 Occurrence Handle1:CAS:528:DC%2BD3sXivVWqtQ%3D%3D Occurrence Handle10.1016/S0167-5729(02)00100-0

  12. [12]

    U. Diebold N. Ruzycki G.S. Herman A. Selloni (2003) Catal. Today 85 93 Occurrence Handle1:CAS:528:DC%2BD3sXnvFGhsrY%3D Occurrence Handle10.1016/S0920-5861(03)00378-X

  13. [13]

    M. Clerici P Ingallina (1993) J. Catal. 140 71 Occurrence Handle1:CAS:528:DyaK3sXhvFSqtbc%3D Occurrence Handle10.1006/jcat.1993.1069

  14. [14]

    J.P.M. Niederer W.F. Holderich (2002) Appl. Catal. A: Gen. 229 51 Occurrence Handle1:CAS:528:DC%2BD38XivVams7c%3D Occurrence Handle10.1016/S0926-860X(02)00015-7

  15. [15]

    A. Tuel L.G. Hubert-Pfalzgraf (2003) J. Catal. 217 343 Occurrence Handle1:CAS:528:DC%2BD3sXktVKjsrs%3D

  16. [16]

    R. Hutter T. Mallat A. Baiker (1995) J. Catal. 157 665 Occurrence Handle1:CAS:528:DyaK2MXhtVSkt7%2FF Occurrence Handle10.1006/jcat.1995.1332

  17. [17]

    H. Kanai Y. Ikeda S. Imamura (2003) Appl. Catal. A: Gen. 247 185 Occurrence Handle1:CAS:528:DC%2BD3sXls1agtb4%3D Occurrence Handle10.1016/S0926-860X(03)00131-5

  18. [18]

    E.P. Talsi D.E. Babushkin (1996) J. Mol. Catal. 106 179 Occurrence Handle1:CAS:528:DyaK28XhvVKktLw%3D Occurrence Handle10.1016/1381-1169(95)00278-2

  19. [19]

    A. Crosman G. Gelbard G. Poncelet V.I. Parvulescu (2004) Appl. Catal. A: Gen. 264 23 Occurrence Handle1:CAS:528:DC%2BD2cXjvVWkt7c%3D Occurrence Handle10.1016/j.apcata.2003.12.021

  20. [20]

    R. Rinaldi U. Schuchardt (2004) J. Catal. 227 109 Occurrence Handle1:CAS:528:DC%2BD2cXntV2gu7Y%3D Occurrence Handle10.1016/j.jcat.2004.06.028

  21. [21]

    R. Ghosh Y.C. Son V.D. Makwana S. Suib (2004) J. Catal. 224 288 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGisrs%3D Occurrence Handle10.1016/j.jcat.2004.03.006

  22. [22]

    M. Jia A. Seifert W.R. Thiel (2004) J. Catal. 221 319 Occurrence Handle1:CAS:528:DC%2BD2cXnsVynsA%3D%3D Occurrence Handle10.1016/j.jcat.2003.07.009

  23. [23]

    P. Awati S. Awate P. Shah V. Ramaswamy (2003) Catal. Commun. 4 393 Occurrence Handle1:CAS:528:DC%2BD3sXlvVCntrY%3D Occurrence Handle10.1016/S1566-7367(03)00092-X

  24. [24]

    C. Arrouvel M. Digne M. Breysse H. Toulhoat P. Raybaud (2004) J. Catal. 222 152 Occurrence Handle1:CAS:528:DC%2BD2cXptFSitQ%3D%3D Occurrence Handle10.1016/j.jcat.2003.10.016

  25. [25]

    A. Hagfeldtt M. Graetzel (1995) Chem. Rev. 95 49 Occurrence Handle10.1021/cr00033a003

  26. [26]

    J.G. Fierro (1990) Stud. Surf. Sci. Catal. 57A 196

  27. [27]

    K.S. Finnie D.J. Cassidy J.R. Bartlett J.L. Woolfrey (2001) Langmuir 17 816 Occurrence Handle1:CAS:528:DC%2BD3MXivVeisQ%3D%3D Occurrence Handle10.1021/la0009240

  28. [28]

    A.B.P. Lever G.A. Ozin H.B. Gray (1980) Inorg. Chem. 19 1823 Occurrence Handle1:CAS:528:DyaL3cXksFOitr0%3D Occurrence Handle10.1021/ic50208a085

  29. [29]

    X. Gao S.R. Bare J.L.G. Fierro M.A. Banares I.E. Wachs (1998) J. Phys. Chem. B 102 5653 Occurrence Handle1:CAS:528:DyaK1cXktVKlu7o%3D Occurrence Handle10.1021/jp981423e

  30. [30]

    P. Awati and V. Ramaswamy, 17th National Symposium on Catalysis, 18–21 Jan 2005, Bhavnagar, India (Unpublished results)

Download references

Author information

Correspondence to Veda Ramaswamy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramaswamy, V., Awati, P. & Ramaswamy, A.V. Epoxidation of indene and cyclooctene on nanocrystalline anatase titania catalyst. Top Catal 38, 251–259 (2006). https://doi.org/10.1007/s11244-006-0023-8

Download citation

Keywords

  • nanocrystalline anatase titania
  • superoxide radical on titania
  • epoxidation of indene
  • cyclooctene epoxidation