Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Performance of Ni/MgO–AN catalyst in high pressure CO2 reforming of methane

Abstract

The catalytic activity of 8.8 wt Ni/MgO–AN prepared from alcogel derived MgO was studied for the dry reforming of methane under high pressure (1.5 MPa). The catalyst showed a self-stabilization process during the reaction that lasted for 50 h, in which the catalytic activity decreased with increasing the reaction time on stream (TOS) up to 12 h, and then became stabilized thereafter. The activity decline during the initial 12 h of the reaction was found closely related to an increase in the amount of carbon deposits on the catalyst, which also became stabilized after the catalyst had served the reaction for 12 h. Comprehensive characterizations of the coked catalyst with Temprature programmed hydrogenation (TPH), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRD) techniques revealed two kinds of carbon deposits (α-carbon and β-carbon) on the used catalyst. The α-carbon deposits were found to be produced from CH<inf>4</inf> decomposition while the β-carbon deposits from CO disproportionation. It was revealed that the accumulation of β-carbon deposits was a key cause for the activity decline and the self-stabilized catalysis during the initial 12 h of the high-pressure reaction. Moreover, it was also observed that an unavoidable sintering of metallic Ni particles from 6.5 to 11 nm, which happened within the very first hour of the reaction, was not directly related to the catalyst stability.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    S.H. Seok S.H. Choi E.D. Park S.H. Han J.S. Lee (2002) J. Catal 209 6

  2. [2]

    Z.P. Hao H.Y. Zhu G.Q. Lu (2003) Appl. Catal. A 242 275

  3. [3]

    J.B. Wang S.Z. Hsiao T.J. Huang (2003) Appl. Catal. A. 246 197

  4. [4]

    J.X. Wang Y. Liu T.X. Cheng W.X. Li Y.L. Bi K.J. Zhen (2003) Appl. Catal. A 250 13

  5. [5]

    J.A.C. Dias J.M. Assaf (2003) Catal. Today 85 59

  6. [6]

    S. Menad P.F. Aparicio O. Cheri G.A. Ruiz I. Rodriguez-Ramos (2003) Catal. Lett. 89 63

  7. [7]

    Z.Y. Hou T. Yashima (2003) Catal. Lett. 89 193

  8. [8]

    Z.W. Liu H.S. Roh K.W. Jun (2003) Ind. J. Eng. Chem. 9 267

  9. [9]

    K. Asami X.H. Li K. Fujimoto Y. Koyama A. Sakurama N. Kometani Y. Yonezawa (2003) Catal. Today 84 27

  10. [10]

    M.C.J. Bradford M.A. Vannice (1996) Appl. Catal. A 142 73

  11. [11]

    Y.G. Chen K. Tomishige K. Yokoyama K. Fujimoto (1999) J. Catal. 184 479

  12. [12]

    Y.H. Hu E. Ruckenstein (2002) Catal. Rev. 44 423

  13. [13]

    E. Ruckenstein Y.H. Hu (1995) Appl. Catal. A. 133 149

  14. [14]

    K. Tomishge O. Yamazaki Y.G. Chen K. Yokoyama X.H. Li K. Fujimoto (1998) Catal. Today 45 35

  15. [15]

    B.Q. Xu J.M. Wei H.Y. Wang K.Q. Sun Q.M. Zhu (2001) Catal. Today 68 217

  16. [16]

    Nagaoka K., Takanabe K., Aika K. Chem. Commun. (2002) 1006.

  17. [17]

    K. Tomishige Y. Himeno Y. Matsuo Y. Yoshinaga K. Fujimoto (2000) Ind. Eng. Chem. Res. 39 1891

  18. [18]

    K. Nagaoka K. Takanabe K. Aika (2003) Appl. Catal. A. 255 13

  19. [19]

    D. Chen R. Lφdeng A. Anundskås O. Olsvik A. Holmen (2001) Chem. Eng. Sci. 56 1371

  20. [20]

    A.J. Brungs A.P.E. York J.B. Claridge C. Marquez-Alvarez M.L.H. Green (2000) Catal. Lett. 70 117

  21. [21]

    J.N. Armor D.J. Martenak (2001) Appl. Catal. A. 206 231

  22. [22]

    Pan W., Song C.S. (2000). Abstracts of Papers of the Am. Chem. Soc. Petr Part 2 Mar 26 2000.

  23. [23]

    K. Nagaoka M. Okamura K. Aika (2001) Catal. Commun. 2 255

  24. [24]

    J.B. Claridge A.P.E. York A.J. Brungs C. Marquez-Alvarez J. Sloan S.C. Tsang M.L.H. Green (1998) J. Catal 180 85

  25. [25]

    A. Shamsi C.D. Johnson (2003) Catal. Today 84 17

  26. [26]

    Q.J. Zhang D.H. He J.L. Li B.Q. Xu Y. Liang Q.M. Zhu (2002) Catal. Appl. A. 224 201

  27. [27]

    B.Q. Xu J.M. Wei Y.T. Yu J.L. Li Q.M. Zhu (2003) Top Catal. 22 77

  28. [28]

    Z.L. Zhang V.A. Tsipouriari A.M. Efstathiou X.E. Verykios (1996) J Catal 158 51

  29. [29]

    B.Q. Xu J.M. Wei Y.T. Yu Y. Li J.L. Li Q.M. Zhu (2003) Phys J. Chem B. 107 5203

  30. [30]

    Y.G. Chen K. Tmmishige K. Fujimoto (1997) Appl. Catal. 161 L11

  31. [31]

    K. Tomishige Y.G. Chen K. Fujimoto (1999) J. Catal 181 91

  32. [32]

    K. Nagaoka K. Seshan K. Aika J.A. Lercher (2001) J. Catal 197 34

  33. [33]

    Z.Y. Hou O. Yokota T. Tanaka T. Yahima (2003) Catal. Lett. 89 121

  34. [34]

    S.B. Wang G.Q. Lu (1998) Appl. Catal. A. 169 271

  35. [35]

    Y. Liu T.X. Cheng D.M. Li P.B. Jiang J.X. Wang W.X. Li Y.L. Bi K.J. Zhen (2003) Catal. Lett. 85 101

  36. [36]

    F.B. Noronha1 E.C. Fendley R.R. Soares W.E. Alvarez D.E. Resasco (2001) Chem. Eng. J. 82 21

  37. [37]

    Z.L. Zhang X.E. Verykios (1994) Catal. Today 21 589

  38. [38]

    H.M. Swaan V.C.H. Koll G.A. Martin C. Mirodatos (1994) Catal. Today 21 571

  39. [39]

    K. Otsuka H. Ogihara S. Takenaka (2003) Carbon 41 223

  40. [40]

    S. Takenaka H. Ogihara K. Otsuka (2002) J. Catal 208 54

  41. [41]

    M. Ito T. Tagawa S. Goto (1999) Appl. Catal. A. 177 15

Download references

Author information

Correspondence to Bo-Qing Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Wang, H., Li, Y. et al. Performance of Ni/MgO–AN catalyst in high pressure CO2 reforming of methane. Top Catal 32, 109–116 (2005). https://doi.org/10.1007/s11244-005-2882-9

Download citation

Keywords

  • Ni catalyst
  • methane dry reforming
  • carbon dioxide
  • high pressure reaction
  • catalyst deactivation
  • coking