Topics in Catalysis

, Volume 33, Issue 1–4, pp 155–169 | Cite as

Ammonia removal from effluent streams of wet oxidation under high pressure

  • A. MartinEmail author
  • F. Luck
  • U. Armbruster
  • L. Patria
  • J. Radnik
  • M. Schneider


The formation of ammonia is inevitable during industrial-scale wet oxidation of wastewater if nitrogen-containing compounds are present. This undesired side-reaction requires additional measures for disposal. Common routes are either the use of noble metal-containing catalysts in the first oxidation step or end-of-pipe treatment. Problems rise for example from the insufficient stability of solid catalysts against hydrothermal impact. As most of the wet oxidation processes run at elevated pressure and temperature, running the heterogeneously catalysed oxidation of ammonia in the gas phase in a downstream reactor could protect the catalysts mainly from leaching and offers an economic alternative by avoiding loss of unused oxygen after depressurisation. This work reports on the oxidation of ammonia with air in steam atmosphere using Cu,Cr-containing supported and bulk catalysts at 235–305 °C and 30–60 bar. A copper chromite catalyst gave best performance (86% conversion at 305 °C, 45 bar, contact time 1 s). The spinel-type phase CuCr2O4 seems to be the active phase and shows superior stability. The results indicate that phase behaviour of water strongly influences activity and lifetime of catalysts. Characterisation of the solids (BET, XRD, XPS, ICP) proved that deactivation is mainly caused by leaching of Cr(VI) species from catalysts when the reaction runs near to dew point of water and by loss of BET surface area of supported catalysts due to hydrothermal impact.


ammonia destruction wet oxidation heterogeneous catalysis copper chromium titania alumina silica high pressure deactivation solid state characterisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mishra, V.S., Mahajani, V.V., Joshi, J.B. 1995Ind. Eng. Chem. Res.342Google Scholar
  2. 2.
    Luck, F. 1996Catal. Today27195Google Scholar
  3. 3.
    Kolaczkowski, S.T., Plucinski, P., Beltran, F.J., Rivas, F.J., McLurgh, D.B. 1999Chem. Eng. J.73143Google Scholar
  4. 4.
    Luck, F. 1999Catal. Today5381Google Scholar
  5. 5.
    Helling, R.K., Tester, J.W. 1988Environ. Sci. Technol.221319Google Scholar
  6. 6.
    Ding, Z.Y., Frisch, M.A., Li, L., Gloyna, E.F. 1996Ind. Eng. Chem. Res.353257Google Scholar
  7. 7.
    Schmieder, H., Abeln, J. 1999Chem. Eng. Technol.22903Google Scholar
  8. 8.
    Oliviero, L., Barbier, J.,Jr., Duprez, D. 2003Appl. Catal. B40163Google Scholar
  9. 9.
    Qin, J., Aika, K. 1998Appl. Catal. B16261Google Scholar
  10. 10.
    Taguchi, J., Okuhara, T. 2000Appl. Catal. A19489Google Scholar
  11. 11.
    Ukropec, R., Kuster, B.F.M., Schouten, J.C., Santen, R.A. 1999Appl. Catal. B2345Google Scholar
  12. 12.
    Barbier, J., Oliviero, L., Renard, B., Duprez, D. 2002Catal. Today7529Google Scholar
  13. 13.
    Kaewpuang-Ngam, S., Inazu, K., Kobayashi, T., Aika, K-I. 2004Water Res.38778PubMedGoogle Scholar
  14. 14.
    Hancock, F.E. 1999Catal. Today533Google Scholar
  15. 15.
    Cao, S., Chen, G., Hu, X., Yue, P.L. 2003Catal. Today8837Google Scholar
  16. 16.
    Reddy, B.M., Ganesh, I.R. 2001J. Mol. Catal.169207Google Scholar
  17. 17.
    Savage, N.O., Akbar, S.A., Dutta, P.K. 2001Sensors and Actuators B72239Google Scholar
  18. 18.
    Nair, J., Nair, P., Mizukami, F., Oosawa, Y., Okubo, T. 1999Mat. Res. Bull.341275Google Scholar
  19. 19.
    Karvinen, S. 2003Solid State Sci.5811Google Scholar
  20. 20.
    Flego, C., Carati, A., Perego, C. 2001Microporous Mesoporous Mat.44–45733Google Scholar
  21. 21.
    McHale, J.M., Yurekli, K., Dabbs, D.M., Navrotsky, A., Sundaresan, S., Aksay, I.A. 1997Chem. Mater.93096Google Scholar
  22. 22.
    Richter, M., Trunschke, A., Bentrup, U., Schreier, E., Brzezinka, K-W., Schneider, M., Fricke, R. 2002J. Catal.20698Google Scholar
  23. 23.
    Trimm D.L., in: Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knözinger and Weitkamp J., (Wiley, New York, 1997) 1278 pp. and refs. thereinGoogle Scholar
  24. 24.
    Bennici, S., Gervasini, A., Ravasio, N., Zaccheria, F. 2003J. Phys. Chem. B1075168Google Scholar
  25. 25.
    Wagner, W., Pruß, A. 1996Chem.-Ing.-Tech.681100Google Scholar
  26. 26.
    Chemistry WebBook Internet edition, National Institute of Standards and Technology (NIST), URL: Scholar
  27. 27.
    Gmehling, J., Kolbe, B. 1992ThermodynamikVCH, WeinheimNew York, Basel, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Martin
    • 1
    Email author
  • F. Luck
    • 2
  • U. Armbruster
    • 1
  • L. Patria
    • 3
  • J. Radnik
    • 1
  • M. Schneider
    • 1
  1. 1.Institut für Angewandte Chemie Berlin-Adlershof e.VBerlinGermany
  2. 2.KompetenzZentrum Wasser Berlin GmbHBerlinGermany
  3. 3.Veolia Water - Anjou RechercheMaisons LaffitteFrance

Personalised recommendations